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Nb_IERICAL APPROXIMATION OF BOUNDARY CONDITIONS WITH

APPLICATIONS TO INVISCID EQUATIONS OF GAS DYNAMICS

H. C. Yee

Ames Research Center

SUMMARY

A comprehensive overview of the state of the art of well-posedness and

stability analysis of difference approximations for initial boundary value

problems of the hyperbolic type is presented. The applicability of recent

theoretical developments to practical calculations for nonlinear gas dynamics

is examined. The one-dimensional inviscid gas-dynamics equations in

conservation-law-form are selected for numerical experiments. The class of

implicit schemes developed from linear multistep methods in ordinary differ-

ential equations is chosen and the use of linear extrapolation as an explicit

boundary scheme is emphasized. Specification of boundary data in the primitive

variables and computation in terms of the conservative variables in the

interior are discussed. Some numerical examples for the quasi-one-dimensional

nozzle are given.

i. INTRODUCTION

The proper specification of boundary conditions which yield a well-posed

problem for a partial differential equation is essential for the behavior of

the solution. Overspecification of boundary data precludes the existence of

smooth solutions except in very special unrealistic situations in which the

exact solution is known on the boundary without error. In the development of

difference approximations for mixed initial boundary value problems in the

applied science field, the boundary conditions may be quite difficult to con-

struct, and a poor choice can lead to inaccuracies and instabilities. Part of

the difficulty starts with the original differential equations where the

proper boundary conditions are not always known (nonlinear fluid dynamics

problems, for example). The problem is compounded in the difference schemes

where quite often extra boundary conditions are needed because the difference

equations are of higher order than the differential equations. Therefore, in

the study of how the extra boundary conditions affect the stability and accu-

racy of numerical schemes, we not only have to examine the difference schemes

used, but we also have to first examine the well-posedness of the original

differential equations (refs. 1-15). Thus a good understanding of the theory

of "well-posed problems" is a necessity.

The two principal objectives of this report are to (i) present a compre-

hensive overview of the state of the art of wel!-posedness and of stability

analysis of difference approximations for initial boundary value problems of

the hyperbolic type, and (2) to examine the applicability of the current theory



to the inviscid (Euler) equations of gas dynamics. (Wewill us
"inviscid gas-dynamicsequations" and "Euler equations of gas
changeably.) Throughan understanding of the theory, we can g
into howto imposethe physical boundary conditions morecorrc
be guided in the construction of stable numerical schemesfor
problems. In this context, "stable numerical schemes"are sc

he terms
_mics" inter-
someinsights

I, and wecan
practical

_esthat are
stable for the combinedinterior and boundaryschemes. Read _ who are famil-
iar with the theory and who are only interested in the appl! zion can skip
the first four subsections of the secondsection and can sk:i the third section
altogether.

In this report, we will discuss several waysof formulating the boundary
approximation for the one-dimenslonal invlscid gas-dynamicsequations in con-
servative form. Since in general the Euler equations have mixed positive and
negative eigenvalues, appropriate one-slded and uncentered boundary approxima-
tions are essential. Someof the methodsproposedin this report combinethe
theory of Gustafssonet al. (ref. 9) with the flux-vector splitting technique
of Steger and Warming(ref. 16) to study the applicability of someuncondi-

tionally stable schemes for the one-dlmenslonal (I-D) linearized Euler equa-

tions to their nonlinear counterpart. A few detailed numerical results for

the quasi-l-D nozzle with various inflow-outflow conditions are given. The

boundary approximations being used are one-slded spatial differencing and

linear extrapolation. It was found that we can use fairly large CFL numbers

(i.e., Courant, Fredrlck, and Levy condition for the stability of differences

schemes).

The review of the theory of well-posed problems and stability analysis of

difference schemes is desirable because significant progress on a general,

workable theory for the initial boundary value problem of the hyperbolic (and

parabolic) type is quite recent. Much of it begins with the work of Kreiss

(ref. i) published in 1970. The recent research papers on this rapidly-

developing subject are principally addressed to highly-theoretlcal audiences,

and there is no text or basic, up-to-date review article covering the material.

A primary purpose of this report is to collect the relevant information and to

identify some of the strengths and weaknesses of the existing theory when it

is applied to physical problems. The material is presented with the needs of

applied scientists in computational fields in mind. Consequently, basic con-

cepts and practical ideas are emphasized while exact mathematical definitions

and theorems are minimized. Only initial boundary value problems of the

hyperbolic type are considered.

Section two of this report is a review of the state of the art of how to

imp0se boundary conditions in order to obtain a well-posed problem, Section

three Is a Comprehen§ive review of the current status of stabiiity analysis of

difference approximations. For example, a recent result by Ollger (ref. I0)

provides a useful guide in the construction of composite stable schemes. In

the fourth section, a detailed application of these theories is given for the

one-dlmenslonal Euler equations of gas dynamics; several numerical experiments

are included. In addition to the numbered references that are cited through-

out the text, a separate bibliography is provided. The bibliographic entries

are categorized according to their particular relevance to sections 2, 3,
and 4.
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2. WELL-POSEDNESSOFINITIAL BOUNDARYVALUEPROBLEMS(IBVP)
FORHYPERBOLICEQUATIONS

In this section, we summarizethe status of well-posedness of initial
boundaryvalue problems (IBVP) for hyperbolic partial differeutlal equations.
A moredetailed discussion of this subject is given in subsequentsections.
Someof the related mathematical definitions and examplesare described in
appendixesA and B. Readerswhoare not familiar with the definitions should
refer to appendixA.

The term "well-posed," or correctly-posed, problemappears frequently in
the literature. There are manydifferent definitions for a well-posed partial
differential equation; for example,well-posedness in Hadamand'ssense is dif-
ferent from well-posedness in Kreiss's or Petrovskii's sense. Thevarious
definitions canbe found in sources contained in the first two sections of the
Bibliography. In this report, we only consider well-posedness in Kreiss's
sense; that is, "well-posedness in the L2 norm." The basic requirement for
a well-posed IBVP is to not overspecify or underspeclfy the boundaryconditions
with given smoothinitial data. In order to mathematically define a well-
posedIBVP, wehave to establish the existence and uniquenessof the solution
and its continuous dependenceon the initial and boundarydata or to establish
the existence of certain _ priori estimates or energy inequalities.

Well-posednessof the governing partial differential equation is a very
crucial consideration commonlyoverlookedby investigators in the field of
computations; that is, the problem is defined only whena proper set of initial
and/or boundaryconditions is given. Wecannot expect our difference approxi-
mations to be reasonable if they approximatea problem that does not have
reasonablesolutions. In manyinstances, a goodunderstanding of the theory
of well-posed problems can guide us to exclude manyboundaryconditions which
might look physically reasonable.

The theory for the IBVPof I-D systemsor degenerate I-D systems (higher
dimensionsystems that can be reducedto I-D problems (ref. 17)) has been
established for sometime. For higher dimension systems (with constant coef-
ficient problems), results are knownfor the strictly hyperbolic and the sym-
metric hyperbolic case (see "MoreThanOneSpaceDimension," p. ii, for defini-
tion). Somepartial results for the multidimensional Euler equations were
established by Ollger and SundstrOm(ref. 6).

The following sections are summarydiscussions of ways to imposeor to
check for well-posedness of IBVP for hyperbolic equations in the L2 norm
(see appendixA). Wewill discuss the following types of problems:
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I. I-D scalar equation

2. I-D system of equations

3. Several space dimensions equations

with constant coefficients, variable coefficients, and quasilinear proper _.

We assume that the problems we are considering have smooth initial data. i

of the permissible ways of imposing boundary conditions in the subsequeT

sections are necessary and sufficient conditions for well-posedness of t I-D

hyperbolic equations. The discussions are based on the methodof chare rls-

tics. For the more-than-one-space'dlmensions problem, the analogous fc ula-

tion need not be well-posed. A proper way of getting a necessary and suffi-

cient condition in this case is by the normal mode analysis (ref. i). One way

of getting a sufficient condition is by the energy method (refs. 4, 12).

Consider the problem

u t + cu x

with initial condition

Scalar Equation

= 0 t £ 0 , c real constant (la)

u(x,0) = f(x) (Ib)

We can divide the above problem into the following three categories.

a. The Cauchy.(initlal value) problem (-_ < x < _): The exact solution

is given by

u(x,t) = f(x _ Ct) (2)

Hence the solution of (i) is constant along the characteristic lines

x- ct = constant. There are no boundary conditions involved since -_ < x < _.

b. Half-space problem (0 S x < _):

11 | i
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A

o"

0 x

u (x,O) = f(x)

c>O

Figure i.- Half-space problem (c > 0).

0 x

u (x, O) = f(x)
c<O

Figure 2.- Half-space problem (c < 0).

If c > O, then u(x,t) is only determined in the triangular region

x - ct g 0 (see fig. i). In this case, we need a boundary condition

u(x,0) = g(t) t >_0

co determine the solution for x - ct < 0. If c < 0, then u(x,t) is

uniquely determined by (2) and it is not appropriate to specify a boundary

condition at x - 0 (see fig. 2). Note that the solution u(x,t) is continu-

ous in a neighborhood of x - ct = 0 if and only if f and g are continuous

and satisfy the compatibility condition

f(0) = g(0)

c. Finite domain problem (0 E x E I):

t
o"

M

0 1

u (x, O) = f(x)
c>O

Figure 3.- Finite domain problem
(c > 0).

t

_ X

o

u Ix, O) = f(x)
c<O

Figure 4.- Finite domain problem
(c < 0).



In this case (see figs. 3 and 4), the necessary and sufficient boundary con-
dition to produce a well-posed problem is

u(0,t) = g(t) if c > 0

u(l,t) = g(t) if c < 0

System of Equations

A system of flrst-order constant coefficient partial differential
equations

u t + Au x = 0 t > 0, 0 _< x < I

is said to be hyperbolic if A is dlagonallzable and with real elgenvalues.

We can divide the system of equations into the following five categories:

a. System of hyperbolic equations in diagonal form

b. System of hyperbolic equations in coupled form

c. Nonposltive definite systems

d. Variable coefficients

e. Quasi-llnear systems

Each is discussed below.

System of hyperbolic equations in diasonal form:

u t + Au x = 0 t > O, 0 _< x <_ I

or

=0

Here

I T
u _ (uI, .... u£)

II u£+i uNu = ( , ., )T

are the dependent vector functions and

°1

(3)

6
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All(00)N
are positive definite diagonal matrices. We can categorize the system further.

i) N decoupled equations with decoupled boundary conditions:

tion is uniquely determined if we specify initial values

ul(x,O) - fl(x)

II
u (x,0) - fll(x)--

The solu-

and boundary conditions

uI(O,t) = gI(t)

ulI(1,t) . glI(t)

In this case, we just solve N independent scalar equations.

ii) N decoupled equations with coupled boundary conditions: We can

couple these equations if we replace the above boundary condition by

uI(o,t) = SlUlI(o,t) + gI(t)

II SllUlu (l,t) - (l,t) + gll(t)
t _> O} (4)

where S I, Sll are rectangular matrices with dimension £ × (N - £) and

(N - _) x £, respectively. From the examination of how the direction of the

characteristic lines (and the initial data) determine the solution of the

finite domain scalar equation, we can conclude that the solution of equa-

tion (3) is again uniquely determined by conditions (4) and the initial data.

Geometrically the values of u I are transported along the characteristic to

the boundary x = I (see fig. 5). Then, by the boundary conditions

ull(l,t) = Sllul(l,t) + gll(t), these values are transformed into values for

uII, which are then transported to the boundary x = 0, etc. Therefore, the

number of boundary conditions for x _ 0 is equal to the number of positive

eigenvalues of the matrix A. And the number of boundary conditions for

x = i is equal to the number of negative eigenvalues. Thus a necessary and

sufficient condition for the IBVP of system (3) to be well-posed is to impose

the boundary conditions in the form of (4). But the analogous formulation for

problems in more than one space dimension is not necessarily well-posed. This

subject is discussed briefly in the next subsection.



DETERMINED BY
u I1(1, t)

DETERMINED BY
THE INITIAL DATA

t u,t
DETERMINED BY

u I (0, t)

/THE INITIAL DATA

X

0 1

u(x, 0) = f(x)

Figure 5.- Coupled boundary conditions.

System of hyperbolic equations of coupled form: In most applications, the

system of differential equations is coupled

u t + Au x = 0 t > 0, 0 _< x _< I

where A is assumed to be a constant matrix which can be diagonalized by a
transformation matrix T.

T-IAT = A

where A has the same form as (3) (or we can rearrange A in order to have

the same form as (3)). For x = 0, the boundary conditions consist of &

lin%ar relations among the components of u, that is, in matrix form

Lu(0,t) = g(t) (5)

where L is an £ x N matrix. Recall that £ is the number of positive

eigenvalues of A. Let the characteristic variables be defined by

w == T-Iu

Then w is the solution of equation (3), and the problem is well-posed'if the

boundary condition

LTw(0,t) = g(t)

at x = O, and the similar boundary condition at x - i, can be written in the

form (4). Here, the rank of L must be equal to the number of positive

elgenvalues of A at x = O. Therefore, any boundary conditions specified

I :|i



for the original system, must be transformable to boundaryconditions of the
form (4).

Nonpositive definite systems: If AI or A ll are not positive definite,

then the components uJ(x,t) corresponding to _ - 0 must be considered as

outgoing variables and will be included in u II Jfor x I 0 and in u I for

x - i. (Variables associated with negative eigenvalues are termed as outgoing

variables, and variables associated with positive eigenvalues are termed as

incoming variables for the left boundary.) Since the characteristic is verti-

cal, the solution along this characteristic is determined by the initial con-

dition. Therefore, our discussion can ass,_e that A I > 0 for x m 0 and

AII > 0 for x = I. That is, we should not specify the corresponding jth

boundary condition with respect to %j - 0.

An example of a well-posed system of hyperbolic equations (from Kreiss

and Oliger, ref. 2) follows. Consider

a "_ --

0_<x_< I

l

The eigenvalues, kj of A, are

_) m --(C -- i)

Assume 0 < c < I, then A has one positive and two negative eigenvalues.

Therefore, we have to specify one boundary condition at x I 0 and two

boundary conditions at x = I.

Let us consider the boundary conditions

ul(1,t) 0

u3(1,t) 0

(6)

and check whether (6) produces a well-posed problem. That is, we have to show

that these conditions are, after transformation, of the form (4). The trans-

formation T that diagonallzes A is

li°°lI:° lT _ I I T -I 1
, I

I 1



and (6) becomes

%(0,t) = w2(0,t)

w I(l,t) = 0

w 2(l,t) =w 3(l,t)

Here

and

W I mW 3

The above equations are obviously of the form of equation (4).

Variable coefficients:

ut + A(x,t)u x - 0 t _ 0, 0 E x _ 1

For every fixed t = to, the form of the well-posed boundary conditions at the
boundaries x - 0 and x = 1 is determined by the systems with constant
coefficients

v t + A(0,to)V x - 0

w t + A(l,to)W x - 0

respectively. This is the so-called "freezing" method. Note that the theory

does not cover the case when an eigenvalue of A(0,t) or A(l,t) changes sign

in the time interval of interest. Therefore, any eigenvalue of A(0,t) or
A(l,t) has to remain the same sign over the time interval of interest if the

current theory is to be applied.

Quasillnear systems:

u t + A(u,x,t)u x = 0 (7)

Assume A(u,x,t) is a smooth function of the arguments u, x, and t, and that
u can be represented as

i0



u(x,t) = U(x,t) + _(x,t)

where U(x,t) represents a known smooth solution and _(x,t) a small perturba-

tion. Linearizlng equation (7) with respect to u(x,t) gives us a linear

system

ut + A(U'x't)Ux " B(U,x,t)_ + F(U,x,t)

The boundary conditions for the well-posed problem are determined by A(U,x,t)

which is discussed in the variable coefficient case. The matrix B(U,x,t) only

affects the initial conditions and F is the nonhomogeneous part of the

equations.

More Than One Space Dimension

Half-space scalar problems (x Z 0, -® < y < _):

u t + au x + buy = 0 x _> 0, -== < y < ==, t >_ 0 1

Ju(x,y,0) = f(x,y) a, b real

(8)

The solution of (8) is

u(x,y,t) = f(x - at, y - bt)

If a < O, then u(x,y,t) is completely determined by f. If a > 0 then we

have to specify boundary values

u(O,y,t) = g(y,t)

Again, the sign of "a" determines whether we need to impose boundary values.

The additional space dimension y does not interfere with the above boundary

condition, since the y domain is -_ < y < _.

Bounded region (scalar problem): Consider equation (8) in a closed bounded

region _ with smooth boundary 8_.

x
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Let (x*,y*) be a point on @R. The boundary d_ta which should be specified at

(x*,y*) are again determined by the direction of the characteristic at t

point. That is, we have to pointwise map the boundary onto the tangen .ane

(n,_). This can be formalized by introducing a new coordinate system

origin (x*,y*) and axes directed as the tangent T and the internal r al q

}1- (x - x*)cos 8 - (y - y*)sin 8

= (x- x*)sin 8 + (y - y*)cos 8

where O is the angle between the y and _ axis• The new transfor ed equa-
tion has the form

U t + _U_ + bU_ m 0 }I_> O, -® < _ < ®, t _>0

where

- a cos 8 - b sin 8

- a sin 8 + b cos 8

The sign of _ determines whether we need to specify boundary data at (x*,y*).

More-than-one-space-dlmension system of equations: The form of the

necessary and sufficient conditions for well-posed problems for the I-D system
only give necessary conditions for their multidimension counterpart. In order

to obtain necessary and sufficient conditions; we have to resort to normal-

mode analysis (see appendix A for definition) and Laplace transform (refs. i-3)

types of approach. Known theory by the normal mode analysis is only for

strictly hyperbolic systems and symmetric hyperbolic systems.

Consider a first-order system in two space dimensions

ut + Au x + Buy - 0 x E 0, -® < y < _, t _ 0

with constant coefficient matrices A and B with dimension N x N. The sys'

tem is hyperbolic if for all real _I, _2 with _l 2 + w2 2 = I, there is a

nonsingular transformation T - T(_, _2) for which both T and T-I are
uniformly bounded such that

T(_IA + _2B)T -I .

_2 0

and lj are real. If all the lj are distinct, the system is strictly
hyperbolic. If the matrices A and B are both symmetric, then we call the

system symmetric hyperbolic. We remark that the 2-D and 3-D inviscid gas-
dynamics equations are not strictly hyperbolic.

12

r!,!]_



We will not discuss the normal mode analysis method here; interested

readers are referred to Kreiss's original paper. Here, we want to discuss the

example that Kreiss and Oliger (ref. 2) and Kreiss (ref. 3) have used to

illustrate the insufficiency of the method of characteristics. Kreiss has

considered the linearized shallow-water equations

w t + Aw x + BWy = O x > O, -=o < y < =o, t _> 0

where

(i0 i)
U o

A _ u o O < u o < 1

0 uo

B -- (i0 01
V o

v o i

i Vo/

Then the matrix A has two positive eigenvalues and two boundary conditions

have to be described at x = 0. Kreiss used boundary conditions of the form

v =0

_u + a¢ = 0

Choosing different values of _,8, the system can have solutions (I) that grow

arbitrarily fast with time, (2) that have too much reflection at the boundary,

or (3) that are smooth and well-behaved. The following are his findings:

i)
ii)

iii)

For n < -I, S = i, situation (i) occurs

For _ = O, _ = i, situation (2) occurs

For _ = I, _ = O, and _ = B = i situation (3) occurs

For problems in several space dimensions that have smooth boundaries and

smooth coefficients, Majda and Osher (ref. 5) showed that we only need to look

at the family of frozen constant-coefficient problems on half-spaces obtained

by locally mapping the boundary onto the tangent plane at each point of the

boundary, freezing the coefficients locally and disregarding the rest of the

boundary. They showed that the original problem is well-posed if every member

of this family of problems is well-posed.

13



Gas-DynamlcsProblems

For the inviscid systemswith smoothsolutions or problemswith low
Reynoldsnumber, Oliger and Sunstr_m(ref. 6) and Oliger (ref. 7) have est

lished conditions for well-posedness of multidimensional problems. For s

sonic inflow problems this set of admissible conditions, with a few exce_ ns,

is of the form similar to (5) with almost full nonzero entries for L. _

means we have to impose a set of conditions that are linear combinatione the

physical variables instead of the physical variables themselves. But, !

physical reasons, we can only specify boundary data that are measurable. In

this case, most of the admissible boundary conditions for subsonic inflow

problems do not have physical significance or are not measurable quantities.

For example, specifying pressure for subsonic inflow is very desirable physi-

cally, but theoretically the solution results in continued loss of smoothness

globally. The most physically well-posed boundary conditions they have shown

are when all of the velocity components along with either the density or the

temperature are specified. By using the method of characteristics or the

normal mode analysis, the I-D inviscid gas-dynamics equations possess some

features that their higher dimensional counterparts do not have; that is,

there are boundary conditions that are well-posed for the I-D Euler equation

but are not well-posed for the 2-D and 3-D case. This I-D case is discussed

in more detail in the next section.

One-Dimensional Inviscid Equations of Gas Dynamics

In one spatial dimension, the inviscid equations of gas dynamics can be

written in the conservative form as

_U + 3F(U)= 0
_t _x

(9)

where

U s

are the conservative variables and

F

is the flux vector, and m = pu.

the density p, the velocity u, and the pressure p.

unit volume, e, is defined as

m 2/p + p

_(e + p)m/p/

The primitive variables (denoted by U) are

The total energy per

14
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e = pE+ pu2/2

with c as the internal energy per unit mass. The pressure p
gas is defined as

p = (y- l)[e- m2/2p]

for a perfect

where ¥ is the ratio of specific heats. Wecanwrite equation (9) in quasi-
linear nonconservative form as

3U + A DU
3Y -ffx" 0 (lO)

with

0 I 0

u 2

(¥ - 3) T (3 - 7)u Y -

(y_ l)u3 yeu ye 3(y- l)u2
p p 2 yu

The nonconservative primitive variable form of the equation is

D0 + _ D0
Tf 7f =° (11)

where

= M-IAM

and

M -I

I i 0 0 )I

-u I 0
T 7

(y - 1)u2
2 (i - y)u (y - I

D0 = M- i
DU

TT: -%T

t

_0 M_I _u
Sx _x
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We can freeze system (Ii) (assume constant values of A " Ao) (notice tL we

do not have to freeze the coefficient before getting into this form; tb

freezing of the coefficient is for later analysis) and transform (Ii)

T-1 _0
+ T-IAoTT-10x - 0 (12)

where

and

(i 0
U o

T-I_o T _ uo + co

0
U o

T -I

i 0

0
/f

0 -_i
/f

with W as the characteristic variables

0)0

-- C O

 co)

W - T-IU

and Uo, Co, and 0o are the "frozen coefficient" values or, numerically, the
values at a given time-step and grid point. System (12) is transformed into

the following characteristic form

Ii 0
u° _W

_W + uo + co 0 - 0

0 uo - c

On the other hand, we can locally linearize system (II) into

_ + A(Uo) __-_ _x + B(Uo)_ + F(Uo'x't) " 0 (13)

where U - Uo + _, and Uo represents a smooth solution and _ is a small

perturbatlon. This local llnearlzatlon of (II) is for checking the well-
posedness of boundary conditions. The boundary conditions are then determined

by A[Uo(x,t)]; that is, the form of the boundary conditions at the boundaries,

say, for fixed t - to , 0 _ x & I, are determined by the systems with constant
coefficients

__ _v
_v + A[Uo(O,to) ] _x " 0 at x - 0_t

(14)

16



w _w
stSw+ A[Uo(l,to)] _x = 0 at x = I (15)

But if we know the type of inflow-outflow conditions beforehand, there is a

very simple way of checking the well-posedness (instead of eqs. (14) and (15))

once a given set of "analytical boundary conditions" are proposed. (We intro-

duce the term "analytical boundary conditions" as the boundary conditions that

are required for the partial differential equations, so that the reader will

not be confused with the term "numerical boundary conditions" that are required

for the finite difference equations but not the differential equations.) The

following is a summary of the conditions for well-posedness; refer to appen-

dix B for a detailed derivation. In the following, we use kij and tij as
the ith row and jth column of the matrices M-IT -I and T -l, respectively,

where M -I and T -I are defined as before (with frozen coefficient). The

boundary is assumed to be at the left of the domain and the flow direction is

from left to right. The gi's and _i's are given values.

Subsonic inflow 0 < u < c: There are two positive eigenvalues of A. We

require two analytical boundary conditions. The necessary and sufficient con-

ditions for well-posedness are as follows.

Conservative form: Impose any pair

or impose

kllp + k12m + kl3e = g1(t)
k21P + k22 m + k23e = g2(t)

Non conservative form: Must impose O, that is, we have to impose

i0 iuor but not

u p p

or impose

t110 + tl2u + t1_p = _1(t)
t210 + t22u + t23P = _2(t)

Subsonic outflow (0 > u > -c): There is one positive eigenvalue. We

require one analytical boundary condition. The necessary and sufficient con-

ditions for well-posedness, for either the conservative or nonconservative

form, are as follows: Impose any one of the variables or impose

17



k21p + k22m+ k23e = g2(t)

for the conservative form, or impose

t21P + t22U + t23 p = g2(t)

for the nonconservative form.

Supersonic inflow u > c: There are three positive eigen_alues. We

require three analytical boundary conditions.

Supersonic outflow u < -c: There is no positive eigenvalue. Therefore

we may not impose any analytical boundary condition.

3. STABLE DIFFERENCE APPROXIMATIONS FOR HYPERBOLIC INITIAL

BOUNDARY VALUE PROBLEMS (IBVP) IN A FINITE DOMAIN

There are essentially three main considerations in studying approximate

solutions to the initial boundary value problems (IBVP): (i) well-posedness

of the original partial differential equations (PDE); (2) the method of con-

structing extra boundary conditions required for the finite difference equa-

tions (FDE) but not the PDE; and (3) the stability and accuracy of the FDE.

In this section, we will review some of the well-known theory on stability

analysis for IBVP, and list some of the commonly used stable schemes (stable

for the combined interior and boundary schemes). The subject of accuracy will

not be addressed here. The reader should refer to Gustafsson (refs 18, 19),

Varah (ref. 20), Sk_llermo (refs. 21, 22), and Sloan (ref. 23) for more detail.

The major result for accuracy analysis is due to Gustafsson (refs. 18, 19),

who proved that boundary schemes can be at most one order lower than the

interior schemes, without loss of global accuracy.

The treatment of difference approximations relating to Cauchy (initial

value) problems of the hyperbolic type is quite well established. On the

other hand, the treatment of mixed IBVP is considerably less well established.

So far, the boundary conditions are quite difficult to construct and a poor

choice can lead to inaccuracies and instabilities. The stability theory for

difference approximations of the IBVP is really only complete for one space

dimension, although this theory is essentially sufficient if the approximations

are dissipative in the tangential directions (ref. 4) for multidimensional

problems. For a one-space-dimension variable coefficient or quasi-linear sys-

tem of hyperbolic equations with smooth solution (no shocks), the theor is

well established. Care is needed to avoid exponential growth due to im i per

boundary extrapolation (refs. 9, 24). Recently Oliger (ref. i0) develop an

easy way of constructing stable boundary schemes for the I-D scalar prob

For problems of higher dimension, little is known except for problems wi_

smooth boundaries, constant coefficients, and strictly hyperbolic cases.

In the study of how boundary approximations affect the stability of ga3-

dynamics equations, rigorous stability analyses have only been applied to I-D

and 2-D scalar equations with variable coefficients or quasi-linear property,

or to systems of equations with constant coefficients. Boundary approximations

18



for problemswith openboundariesand for viscous fluids at high Reynoldsnum-
bers have not been studied sufficiently. Boundaryapproximations for factored
or splitted implicit methodshave not been analyzed. Crandall andMajda
(ref. 25) have developeda complete treatment of the stability and convergence
properties for scalar conservation laws in several spacevariables. Their
methodis a conservation-form, monotonedifference approximation. Manyinves-
tigators have applied various boundary approximations to the nonconservative
form of the nonlinear systemand have comparedthe results with experimental
data (see the Bibliography: Fluid Dynamics). Coughran(ref. 26) has devised
a numerical methodbasedon normalmodeanalysis (defined in appendixC) to
study stable boundaryschemesfor the I-D Euler equations. The following is a
summaryof the recent developmentsof currently available tools for stability
analysis -- concentrating on the more fundamentalaspects of the subject, with
a moredetailed description of the theory for one space dimension. All of the
initial data that weuse throughout the report are assumedto be
square-integrable.

FundamentalConcepts

In order to explain someof the difficulties, let us consider the differ-
ential equation

ut - ux = 0 x g 0, t _ 0
!u(x,O) = f(x)

(16)

From the well-posedness of the problem, we know that no boundary conditions

should be specified for x = 0, t t 0. If we want to solve equation (16),

using some finite difference scheme, we need information about u at the

"numerical boundary" x = O, unless we use appropriate one-sided spatial dif-

ferencing. For convenience, we will call the imposed boundary condition the

"analytical boundary condition" and the extra boundary condition needed for

the difference approximation the "numerical boundary condition."

Let us say we want to solve the above problem using the leap-frog scheme

n+1 n-I &t n n

vj = v.j + _x (vj+ I - vj_ l) (17)

where v'nl = v(j£x, nat) denotes the numerical solution of u. We assume that

&t/&x < _; that is, equation (17) is a stable approximation for the Cauchy

problem. We need an additional equation for v(O,t). Let us overspecify

v(0,t) as

v(O,t) - g(t)

In general this overspecification will destroy the convergence. The only

exception is the case in which v(0,t) = u(0,t), where u(0,t) denotes the

solution at the boundary. But normally, we would not know about the exact

solution. Kreiss and Lunqvist (ref. 27) and Gustafsson and Kreiss (ref. 17)

have shown that "inexact" overspecification of boundary conditions leads to

oscillatory solutions for this type of scheme (centered scheme, nondissipative).
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Therefore, one needs to be very careful whenoverspecifying boundary cot
tions. Thesolution will look nicer if the approximation is dissipativ,
becausethe oscillations will be damped. However,near the boundary th
are quite serious. If one considers a system of equations, this error

propagated into the interior of the region by the ingoing characterist

the coupled variables, even when dissipative approximations are used.

stable way of handling von is

yon = vn -I

rots

be

of

.e

Another is

von- 2v_ -I - v_ -2

To illustrate another difficulty, let us consider

/ \V/x

- 1 < x < i, t > 0

u(x,0) - it(x)

v(x,0) = f2(x)

u(-l,t) = g1(t)

u(l,t) = g2(t)

where the fi's and gi's are square-integrable. From the method of charac-

teristics or normal-mode analysis, it can be shown that this problem is well-

posed. In solving the equation numerically, we generally need special differ-

ence equations to find v at both boundaries, even though analytically, the

solution is uniquely determined for the PDE. Gottlieb and Turkel (ref. 24)

have shown that if one uses the Lax-Wendroff finite difference method in the

interior and quadratic spatial extrapolation for v at the boundary, then the

resulting system is unstable. But Gustafsson et al. (ref. 9) have shown that

the same extrapolation is stable in conjunction with the Lax-Wendroff method

for scalar equations. In reference 28, Gottlieb et al. show that a straight-

forward extension of the scalar results to a system may not work. However, by

proper use of the characteristic variable at the boundaries, they demonstrate

how the results of the scalar equation can be extended to a system. They show

(in ref. 28) that by using quadratic spatial extrapolation for the appropriate

characteristic variables, the revised method isstable. This is sometimes

called the "characteristic stability theorem."

20
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Overview and Developmentof Stability Theory

For a one-space-dimensionlinear constant coefficient system,we can
divide difference methodsinto two classes -- those that belong to the "method
of lines" approachand those that do not. Themethodof lines uses a finite-
difference approximation in space and an ODE(ordinary differential equation)
solver in time. For the methedof lines approach, the stability of someof
the popular schemes,like the central, forward, and backwardspatial differ-
encing schemes,coupled with simple boundaryapproximations wasanalyzed by
Gary (ref. 29) (the matrix method), and by Dahlquist (ref. 30) (the positive
real-function approach). In appendixD, we discuss the stability analysis of
Gary andDahlquist. They only showedthe stability of the methodfor fixed
Zx; that is, they did not showstability in the usual sense. In order to
satisfy the definition of stability, these methodsinvolve the additional
analysis of infinite dimension matrices.

For the approach that is not a methodof lines approach, the simplest
heuristic condition for stability wasdiscussed by Trapp and Ramshaw(ref. Ii).
Their analysis used the interior as well as the boundary approximation to do a
related Cauchyproblemby the Fourier method(VonNeumann). An interior or
boundaryapproximation is said to be Cauchystable if it is stable for the
related Cauchyproblem (the related initial value problem, i.e., the domain
for I-D is -= < x < =). Theyclaimed that the minimumof the related Cauchy
stability bound for the interior and the boundarycan be used as the stability
boundof the entire problem. But this heuristic approachdoes not provide
sufficient conditions or proper hypothesesfor stability of the IBVP.

Themost rigorous classical approachto the stability boundis the energy
method. It is a powerful tool in dealing with certain particular equations
or particular classes of equations (refs. 3, 6, 12). It can becomerather
complicated or tricky to apply, but it can deal effectively with boundarycon-
ditions and handles variable coefficients easily. However, it does not give
necessaryand sufficient conditions.

A moreunified approach to stability theory is due to Kreiss (ref. 8),
and to Gustafssonet al. (ref. 9). It is sometimescalled the normal-mode
analysis. Strikwerda (ref. 31) has applied this theory for the methodof lines
approach. Godunovand Ryabenkii, whosework is discussed in reference 12,
first gavenecessary stability conditions for I-D problems by considering
modesof the form u.n _ <n_j (n - time step index, j - spacemeshpoint
index), where I_l <Jl and j counts meshpoints awayfrom the boundary. Kreiss
(ref. 8) and Gustafssonet al. (ref. 9) have greatly refined the approach,
giving only mildly stricter conditions which are necessary and sufficient for
stability. However,the analysis is morecomplexthan that for the interior
(i.e., the Cauchyproblem). There are someimportant simple cases that have
beenstudied in detail by this method, especially for dissipative approxima-
tions. This theory is _ posteriori in nature. Given a difference method, we

can use this theory to determine whether the method is stable; but the stabil-

ity criteria are often very difficult to verify. An example of how this theory

applies to the first-order hyperbolic scalar equation with the simple veil-

known difference approximations can be found in appendix C. Recently, Oliger

(ref. 10) gave sufficient stability conditions that are very easy to check.
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A detailed discussion of the related theory is presented in appendix E. "_ese

conditions can be used to guide us in the construction of stable methoc r

the initial boundary value problems. In order to make the development

understandable, we use (in appendix E) the case of a strictly hyperbol Is-

tem with constant coefficients and coupled boundary conditions that ar =ll-

posed. Then we discuss how we can arrive at the point at which it is

necessary to consider anything more complex than a single scalar equ_ n for

each transformed variable. The stability analysis of this scalar eq_ _on in

a finite domain is equivalent to the analysis of two related quarter ane

problems. We then proceed to discuss the way to construct stable schemes.

The main assumption of the theory for constructing stable schemes is that the

interior and boundary approximations are Cauchy stable and at least one of the

approximations is dissipative. A point of caution -- the sufficient condition

does not guarantee sharp limits for conditionally stable methods.

Some Stable Boundary Schemes (for Right Quarter Plane Problem,

i.e., x g 0)

The following are some popular boundary schemes.

Extrapolation:

One-sided scheme:

n+l = v_+l (18a)v o

 n+1= 2v +i_o (185)

v_+I = vln (18c)

n+l m 2vln n-ivo - ve (18d)

n+ I + At ( vln - v°n)VO ----Yon _X

Box scheme:

_vn' ) von)_ n+l vn+l o

vo + - At _x " Vo n + vln + At \

By using the normal-mode analysis (ref. 9), it can be shown that using the

boundary schemes ((18a), (18b)), the one-sided scheme and the box scheme,

together with the Lax-Wendroff or the Crank-Nicholson method, produces stable

schemes for the right quarter-plane model problem:

ut - ux - 0 x > O, t > 0_ (19)

u(x,O) ,, f(x) J
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Extrapolation at the same time level ((18a), (18b)) (spatial extrapolation) is

not a stable process for the leap-frog scheme. For leap-frog types of schemes,

we have to use (18c) and (18d), the one-sided scheme, or the box scheme. For

predictor corrector schemes, like that of Richtmyer and Morton (ref. 12), or

the MacCormick scheme (for linear constant coefficient, these two methods are

identical) there are intermediate steps involved; Gottlieb and Turkel (ref. 24)

have studied these schemes in detail. They have shown that spatial extrapola-

tion ((18a), (18b)) and the one-sided boundary schemes are good choices.

Now, we consider the class of interior schemes that evolves from linear

multistep methods in ordinary differential equations (ref. 32). For model

equation (19) with central spatial differencing, this class of schemes is of

the form

)p(E)uj n _ -&to(E) uj+! - u'-1 (20)

Here E is the shift operator defined by

Eu.n = uT+l
J J

and p and _ are polynomials defined by

p(E) = (i + _)E 2 - (i + 25)E +

o(E) = eE 2 + (i - _ + _)E - ¢

The notation is consistent with that for linear multistep methods for

ordinary differential equations and p(E) should not be confused with density.

Some of the well-known methods (in time) belonging to this class are listed
in table i.

TABLE i.- PARTIAL LISTING OF LINEAR MULTISTEP

METHODS

r

Method _ 0 ¢

I. Backward Euler 0 1 0

2. Two-step backward Euler -i/2 1 0

3. Trapezoidal (Crank-Nicholson) 0 i/2 0

4. Backward differentiation 1/2 1 0

5. Adams 0 3/4 -I/4

6. Lees -1/2 i/3 -i/3

7. Two-step trapezoidal -i/2 i/2 -1/2

8. A-contractive -I/6 5/9 -2/9

9. Leap-frog -I/2 0 0

I0. Milne -I/2 i/6 -i/6
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The first eight methodsare unconditionally stable for the Cauchyproblemand
the remaining ones are conditionally stable. For the class of all two-step
methodsthat are at least second-order time accurate, the parameters (8,_,_)
are related by (ref. 32)

_=_-8+I/2

The class of all third-order methods (in time) is obtained by imposing the
additional condition

= 2e - 5/6

There is a unique fourth-order method, specified by

e =-_ =-_13 = 1/6

which is called Milne's method. Asume _ = (At/2Ax) is chosen such that the

method being discussed is stable for the related Cauchy problem. That is,

equation (20) with j = O, Zl, ±2, . ., is stable. Gustafsson and Oliger

(ref. 33) have proved the following results:

I. If the boundary extrapolation ((18a) and (18b)) is used with the

method (20) in table i, then the resulting methods are all stable for the

initial boundary value problem (19) except for the leap-frog and Milne methods.

II. If the boundary extrapolation (18a) and (18b) is used with the

method (20) in table i, then the resulting methods are all stable for the

initial boundary value problem (19) except for the two-step backward Euler,

Lees, and two-step trapezoidal methods.

All of the numerical schemes (interior + boundary) that we are going to

study in the next section are mainly implicit schemes. For the model equa-

tion (19), these schemes are unconditionally stable. One of the schemes is

the backward Euler method in equations (20) and (18b).

Stability Analysis of a Finite Domain

Consider the scalar hyperbolic equation

ut + CUx = 0 0 _< x _< I, t >_ 0 (2t)

with initial condition u(x,O) - f(x). From the well-posedness of the problem

(ref. i), we have to specify analytically a boundary condition at the right

boundary x = i, when c is negative, or at the left boundary x = O, when

c is positive. Hence, in addition to equation (21) and the initial data, we

specify boundary conditions

u(l,t) = g1(t) if c < 0
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or

u(0,t) = g0(t) if c > 0

Let us assume c < O. From a theorem of Gustafsson et al. (ref. 9), the

stability of a difference approximation for the initial boundary value prob-

lem (21) on 0 E x E i is equivalent to the stability of two related quarter-

plane problems. The related right and left quarter-plane problems are defined

as

ut + cux - 0 0 _<x < =, t > 0
c < 0 J

u(x,0) " f(x)

(22)

ut + cux - 0 -= < x < i, t > 0_
c <0

Ju(x,0) = f(x)

u(l,t) - g_(t)

respectively. If only two- and three-point schemes are considered, then the

stability analysis of the IBVP associated with (3.6) is transferred to the

right quarter-plane problem (22). The stability of the left quarter-plane

problem (3.8) reduces to the stability of a Cauchy problem.

(23)

4. APPLICATIONS TO THE I-D INVISCID EQUATIONS OF GAS DYNAMICS

From the computational point of view, the unsteady inviscid gas-dynamics

equations (Euler equations) in conservation law form have the following

properties:

a. They are a quasi-linear hyperbolic system.

b. In general, the Jacobian of the flux vector consists of mixed posi-

tive and negative eigenvalues (characteristic speed).

c. The flux vectors of the Euler equations are homogeneous functions of

degree one in the dependent variables.

d. The homogeneous properties provide a formal procedure for decomposing

the flux vectors into subvectors, each of which depends on eigenvalues of the

same sign (flux-vector splitting (ref. 16). Consequently, one-sided spatial

difference operators can be used to construct a dissipative scheme.

There are essentially two popular forms of the Euler equations being

used in the computational fluid dynamics field: the conservative form (9) and
the nonconservative form (11). Mathematically they are equivalent, but from

the computational point of view they produce different solutions, if the same
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numerical scheme is applied on the two forms. The study of well-posedness and

stability of difference approximations is easier using the nonconservative

form. Most of the existing theory and applications of the theory on the abo,,e

studies use the nonconservatlve form. Recently, the development of computa-

tional methods utilizing one-slded differencing gained popularity. Some of

the one-sided differencing schemes are those of Godunov (ref. 34), Steger and

Warming (ref. 16), Engquist and Osher (ref. 35), Roe (ref. 36), Carver

(ref. 37), and Lax and Harten (private communication). At this time, there are

no published results comparing the above one-sided differencing schemes, but

some are more difficult to use than the others. The flux vector splitting

method is useful for the application of a one-sided dissipative scheme on the

conservative form, since the method is very simple to use and provides a proper

way of handling the inflow-outflow boundary efficiently. For example, we can

apply the one-sided difference operators on the split-flux subvectors over the

interior and boundary points or, we can apply the one-sided difference opera-

tors on the split-flux subvector over the boundary points only.

We are going to discuss the stability of a few numerical schemes for the

I-D Euler equations. Stability analysis is based on local linearlzation and

solutions are assumed to be smooth near the boundaries. The various methods

of handling the numerical boundary will be discussed briefly, but the method

of linear extrapolation in the characteristic variables will be the main topic.

Some numerical solutions of the quasi-l-D nozzle problem will be used to illus-

trate the commonly discussed issues; for example, explicit versus implicit

boundary schemes, unconditionally stable schemes, and underspecification or

overspeciflcation of boundary conditions.

Flux-Vector Splitting

As discussed earlier, the nonlinear flux vector F(U) is a homogenous

function of degree one in U; that is F(eU) = _F(U). By application of

Euler's theorem on homogenous functions, it follows that

_F
F = AU =_=:.. U

4u

F can be split into two parts _s (ref. 16)

F = F+ + F-

where

values %+ of

Therefore

with

F+ corresponds to the subvector associated with the positive eigen-

A, and F- corresponds to the negative eigenvalues %-.

F = F + + F- = (A+ + A-)U

Q = MT , Q-I = T-IQ-I

A+ = QA+Q -I , A- = QA-Q -I

and matrices M -x and T -I are defined in section 2.

(24)
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For 0 E u E c, we have

I( 2yu+c - u 1

2('/"- 1)U 2 + (U + C) 2

_ _ 1)u _ + (u + c) 3 + (3 - y)(u + c)c 2
2 _TV_ _) 7

I U - C 1

(U --C)2

(u - c) s (3 - _)(u - c)c 2
_. + 2(y- i)

For u > c, we have

F+=F , F- = 0

The diagonal matrices A+, A- are given by

A+ =

u+ lul 0 1

2 0

o u+c+ !u+c[
2 0 ,

0 0 u-c+]u-c!
2

(25)

(26)

A m

u-luE 0 0 ii

2

: o u+c-I_+£[
" 2 0

0 0 u-c-lu-c
2

Difference Approximations of the Inviscid Equations

of Gas Dynamics

By adopting the notation of Warming and Beam (ref. 38) and of Beam and

Warming (ref. 32), the I-D system of inviscid gas-dynamics equations can be

approximated by a simple generalized three-level time differencing in the
_(E) form as

./_F\ n
(I + _At _ An)_(E)Un= -At[o(E)- _0(E)JtT-£) (27)
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(Note: [I + _At(_/_x)An]p(E)Un - o(E)Un + _At{_[Anp(E)Un]}/_x.) The param-
eter _ =[0/(i+ _)] is determined by the particular time-dlfferenclng approxi-
mation used. Scheme(27) includes the following well-known implicit formulag
(see sec. 3):

1

=0 , e =_, _ =0

_ = 0 , @ = i , 0 = 0

i

trapezoidal (Crank-Nicholson)

backward Euler

backward differentiation

In (27), A n = A(Un), (_F/_x) n = [_F(Un)/_x], and U n is the solution at

t = nat with AT as the time step.

There are two ways to utilize the flux-vector splitting:

a. Apply one-sided approximations on the split-flux subvector throughout

the entire computational domain of definition. (For example, use backward

spatial differences for the "positive" subvector and forward differences for

the "negative" subvector.)

b. Apply the one-sided approximations on the split-flux subvector on the

first and last interior points only.

If we apply the flux-vector splitting on both the interior points and

boundary points, system (27) can be expressed in the following form

+ _At +_-_A -n p(E)U n = -At[o(E) _p(E)] +

where A +, A-, F+, F- are defined as in equations (24)-(26). One-sided

first-order backward and forward-difference operators can be used for the

spatial derivatives on the left-hand side of (28):

I ";"P (E)U_ n A_-IP i
_ [A+np(E)U n] = + O(_x)

i _x

n n n (E)Uj nAj+IP(E)U_+ I - A_ P

= _x + 0 (_x)B__ [A_np(E)Un]l
_x j

(28)

The second-order approximations are of

The spatial derivatives on the right of (28) can be approximated by the

first- or second-order approximations.

the form:
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_F+nI
_x j

3F_n +n +n
= - 4Fj_ I + Fj_ 2 + 0(&x 2)

2_x

n _n _n

n[ -3F_ + 4F_+ 1 - F_+ 2
_F- =

Sx j 2Ax + 0 r_ix2
)

The resulting algorithm (for the associated linearized Cauchy problem) is a

dissipative, unconditionally stable, second-order algorithm, if we use two-

step backward Euler time-differencing (e w I, _ = I/2, ¢ - 0). The solution

of (28) requires block tridiagonal inversion. We can introduce an approximate

factorization of the left-hand side of (28), and change system (28) to the

product of two operators as

(I + _Lt 35x A+n)(I + war _ A-n) = - [(_x ) - (_)n]+n
-- _(E)U n -At [o(E) _¢ (E) ]

(29)

The solution of (29) only requires block bidiagonal inversion. The sta-

bility of (29) is more difficult to analyze. We will only use form (28) for

the quasi-l-D nozzle.

Instead of using one-sided differencing throughout, we use system (27)

without splitting A and F into two parts in the interior. The spatial

derivative can be approximated by central differencing. For the first and

last computational points, we can use the form (28).

So far, stability analyses of variable coefficient or quasi-linear

hyperbolic problems are only known for scalar equations or for systems with

smooth coefficients and smooth solutions (ref. 2). For systems with nonsmooth

coefficients or solutions, nonlinear instability can occur; for example, when

an eigenvalue changes sign. One remedy is to use a dissipative scheme or add

a dissipative term to the original differential equation. The one-sided

spatial difference schemes "comes" with dissipation and frequently we have no

control over it. The centered (spatial) schemes require "added" on dissipa-

tion but allow different dissipative weight treatment in different regions of

the solution. Both methods are quite popular in the computational fluid

dynamics field.

Stability Analysis

As we have discussed before, theory for stability analysis of difference

approximations for I-D nonlinear hyperbolic equations has been established

only for schemes that are dissipative or for problems with smooth solutions.

The method of analysis depends on the "freezing method." If we freeze (_F/_U),

then there is no distinction between the conservative and the nonconservative

form. For each x = x o, t = to we have a system of constant coefficient

equations to analyze; that is,
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___U+ A[U(xo,to) ] _-x 0 (30)3t

As wewill see later, the analysis is very simple. System(30) canbe decou-
pied into three scalar equations:

_wI _wI
_--_-+ _ _--_-= 0

_w 2 _w 2

_-'V + _2 -'_x = o

_w 3 _w 3

3--i-+ 13 -_-x = 0

(31)

with

_1 = U(Xo,to) = Uo

_2 = U(Xo,to) + C(Xo,=o) = Uo + Co

_3 = U(Xo,to) - C(Xo,to) = Uo - Co

Thus, at each time-step, the stability analysis consists of a pointwise

examination of equations (31) For the higher order explicit methods, it is

easier to use Oliger's method (ref. i0) than the normal-mode analysis method

to check for stability. On the surface, Oliger's sufficient condition con-

sists of two parts (assuming the combined interior and boundary schemes are

stable for the model problem).

a. Apply the interior difference scheme to (30) and do Cauchy stability

shecks for all x o that are interior points.

b. Apply the boundary difference schemes to (30) and do Cauchy stability

checks for all x o that are boundary points.

If conditions (a) and (b) pass the stability tests at each point for

every time step, what can we say about the stability of the original uncoupled

nonlinear system? Stability is confirmed if at least one of the ap',oxima-

tions is dissipative (this is a sufficient condition; that is, an '_ _table"

boundary scheme for the related Cauchy problem does not imply that com-

bined -- interior plus boundary -- scheme is not stable) and if the sc ions

are smooth. In the actual case, the stability checks of part (a) ant )

involve scalar equations only. For popular numerical schemes, Cauch> _bi'ty

bounds are known. The major work is the testing of the values of li

i = i, 2, 3 at each grid point and time step. This is trivial since I i

are known. The method of normal mode analysis can follow the same appr :ich,

except in this case we have a necessary and sufficient Condition. But i_gher

order methods are more difficult to verify. Often, we have to resort to

numerical methods of solving a set of complicated resolvent equations
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(defined in appendixC). For problemswith shocks, there is no guarantee
that stability of the "freezing" family will imply stability of the original
nonlinear problem. But, usually, it is quite promising if we use a dissipative
scheme.

The Numerical BoundaryConditions

To simplify the discussion, let us assumethat the spatial differencing
we are going to usewill be a first-order-one-sided or central-difference
scheme,and denote the left and right boundarynode index as O and J. Then
the spatial differencing of (27) and (28) on the first and last computational
points involves terms like

n

EoAU o

Ej&Uj n

where Eo, Ej are some known matrices determined from the previous time step,

and iU n = U n+1 - U n. The AUo n, AUj n are partially known from the analyti-

cal boundary condition, with the exception of supersonic inflow. A few of the

popular methods of obtaining the expression for the numerical boundary condi-

tions are by

a. Extrapolating in space or space-time (refs. 28, 39).

b. Discretizing the Riemann invariant equations (the nonlinearized form

of the characteristic equations) or the characteristic equations (12) locally

(refs. 40, 41, and J. Oliger (private communication)).

c. Taking derivatives of the known condition in order to produce an

extra boundary condition (refs. 19, 42, and M. Hyman (private communication)).

d. Using nonreflecting boundary conditions (refs. 17, 43, 44).

e. Overspecifying the boundary conditions.

For implicit schemes, methods (a)-(d) above are quite complicated to

implement into a computer code. Method (e) is of limited usefulness since it

requires a priori knowledge of the exact solution to the difference equation

at the boundary. Method (a) has the advantage of being the easiest to use;

therefore, our study concentrates on method (a). But, as we know, extrapola-

tion procedures suffer from the disadvantage of not modeling the differential

equation (or not depending on the differential equations). However, if we use

spatial linear extrapolation together with the two ways of utilizing the flux-

vector splitting from the preceding subsection (Stability Analysis), the

spatial differencing is already tailored to the direction of the characteris-

tic curve locally. The extra unknowns that are required at the boundaries are

due to the noniterative property of the scheme and the coupling of the physi-

cal equations. Therefore, the numerical procedure for the extra unknowns at

the boundaries should not be as crucial -- spatial linear extrapolation appears
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to be a goodchoice. As before wewill use the term "numerical boundarycon-
ditions" as the extra boundary conditions that are required for the FDEbut
not for the PDE,or as the extra unknownsat the boundaries due to the non-
iterative property of the scheme(local linearlzation).

In implementingany methods(a)-(d), there are numerousand complicated
details involved. Here, we will simply consider the spatial linear extrapola-
tion in detail. Themain point of this study is to showthat the use of spa-
tial linear extrapolation as boundaryschemesfor the implicit method(dis-
cussed in the subsection "Difference Approximationsof the Inviscid Equations
of GasDynamics," sec. 4), is quite successful. Other comparisonsof methods
and application to different types of physical problemswill be reported
elsewhere (ref. 45).

Spatial Linear Extrapolation for the Numerical BoundaryConditions

For physical reasons, wesometimesprefer to specify boundarydata in the
primitive variables and computein terms of the conservative variables in the
interior. Thus the choice of variables for the analytical boundaryconditions
to be imposedandnumericai (or extra) boundarycondltions to be extrapolated
for the conservatlve form (9) can be divided into the following four groups:

Group

I
II

III
IV

Variable
(anal. B.C.)
Conservative
Conservative
Primitive
Primitive

Vatlab le
(num. B.C.)

Conservative
Characteristic
Primitive
Characteristic

Undercertain inflow-outflow combinations, not all of the abovewaysof
imposing analytical boundary conditions are mathematically possible (or physi-
cally desirable). If possible, group I is by far the simplest to implement
with the rest appearing in increasing order of complexity. GroupIV, on the
other handis morephysically desirable andmore theoretically sound (ref. 28).
GroupsII and IV reduce to the scalar modelhyperbolic equations for the
llnearized equations of (9) and (ii), respectively. Wecan have a whole class
of stable schemesto choosefrom, as discussed in section 3. This is also

true for group I in the supersonic inflow or supersonic outflow case. Now we

turn to discuss group III. For the subsonic inflow case, it has been shown by

Gustafsson and Ollger (ref. 33) that all the approximations (27) with param-

eter values in table I are stable, with the following boundary conditions:

po n given

Uo n given

n . 2plnPo - P2n
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For the subsonic outflow case, Gustafssonand Oliger (ref. 33) also proved
that all the approximations (27) with parametervalues in table i (except for
leap-frog and Milne) are stable, with the following waysof handling the
boundary conditions:

(i) Uon given

pon = 2pln - p2n

n n
Po = 2Pl n - P2

i

7

i

(ii) po n given

Oo n = 201 n 02 n

Uo n = 2Ul n - u2 n

Here, we will describe the spatial linear extrapolations in the characteristic

variables, that is, group II. Other groups can follow similar procedures.

The relation between the conservative and characteristic variables is

T-IM-IU = W
t t

with U the vector of conservative variables, and W the vector of character-

istic variables. The procedures for group II at inflow (left boundary) will be

i) Make a first-order approximation:

(T-iM-1)on&Uo n = &Won

ii) Reorder Uo n into subvectors (Ul)o n and (ull)o n where (Ul)o n is

the "analytical" boundary condition and (ull)on is the "numerical" boundary
condition.

iii) Reorder Wo n into subvectors (Wl)o n and (wll)on where (Wl)o n

corresponds to the subvector associated with the positive eigenvalues of

and (wll)on corresponds to the negative eigenvalues of A (for outflow right

boundary, the signs of the eigenvalues are the reverse).

iv) Reorder (T-iM-l)o n and partitioned it accordingly as

(i
3 P4/

0
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Then we have

o o o

Note that the delta formulation (AU) is important for step (1) b _use of the

nonlinear relation between conservative, primitive, and characteristic vari-

ables. Now spatial linear extrapolation in the characteristic variables means

(AWII)on . 2(AWlI)In 1 (AWII)2n

This implies

(PsAU I + P_Aull)on - 2(P3AU I + P_AUII)In - (P3AU I + P_AUII)2n

Since P_ should be nonsingular for a well-posed problem, we can rearrange

terms and obtain

(Aull)on . Ro(dUl)o n + RI(AU) In + R2(AU)2 n (32)

where Ro, RI, R2 are known rectangular matrices which can be evaluated from

the previous time step. (Note the mixture of dimensions in the equations.)

Similarly, the outflow numerical boundaries can be expressed as

n
(AuI )jn - So( UI)j + + 2 (331

A similar formula can be derived if we impose the analytical boundary

condition with the primitive variables (group IV)

(A011)on . Ro(_01)o n + RI(AU)I n + R2(AU)2 n

for the inflow boundary. By imposing primitive variables as analytical bound-

ary conditions for the conservative system, group IV involves extra lineariza-

tion and extra computatlons.

If instead of using linear extrapolation for the numerical boundary con-

ditlons we discretlze t_e characteristic equation and obtain an expression for

(Aull)on , the counterpart of Ri's will be even more complicated than the

Ri's.

There are two ways to alter the existing code by using the implicit

boundary scheme:

(a) Add correction matrices like (32) and (33) onto the first and last

block rows of the block tridlagonal matrix.
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(b) Use equations like (32) and (33) as extra equations in the block tri-

diagonal matrix; that is, increase the dimension of the block tridiagonal

matrix by dim(Uo II) + dim(Uj II) -- dim(Uo II) means the dimension of Uo II. A

word of caution, the final form of the matrix might not be in block tridiagonal
form.

Some Numerical Results

The nozzles we consider are shown in figures 6 and 7 (refs. 39, 46). We

use the unsteady gas-dynamics equations to obtain the steady-state solutions

for various inflow-outflow conditions. The numerical spatial derivative

approximations for the quasi-1-D nozzle problem are summarized as follows in

table 2. The time differencing is the backward Euler method (high in stabil-

ity). The trapezoidal formula, although yielding greater accuracy for small

CFL numbers, results in instabilities for large CFL numbers. Additional time-

differencing approximations and numerical boundary condition procedures will
be considered in a future paper (ref. 45).

SUPERSONIC _ I SUBSONIC

FILO w | OUTFLOWIN SHOCK
A(X) I _ X

I xjx° L I

A(X) = 1.398 + 0.347 * TANH (0.8 X - 4)

Figure 6.- Shubin nozzle, (ref. 46) for supersonic inflow, subsonic outflow

study.

I A(x)

J

XTIH XEX

A(x) = 1 + (AEN - 1) [(XTH - x) / XTH ]2

A(x) = 1 + (AEx - 1) [(x - XTH) / (XEx - XTH)]2

x _< XTH

x >XTH

Figure 7.- Convergent-divergent nozzle (ref. 39) for subsonic inflow,

outflow study.
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TABLE 2.- NUMERICAL SCHEMES

Methodl Interior Boundary, numerical

1

4

5

Second-order one-sided a

(flux-vector splitting)

First-order one-slded

(flux-vector splitting)

Central b'c + spectral norm

(equivalent to Scheme 2)

(ref. 16)

Central b,c

Central b + one-sided at

first and last computa-

tional points

Linear extrapolation

Linear extrapolation

Linear extrapolation

Linear extrapolation

Linear extrapolation

aSecond-order for _F+/_x and _F-/_x, but first-order

for _A+/_x and SA-/_x.

bFourth-order dissipation was added for the interior

scheme.

CSecond-order dissipation was added at the boundary

points.

The numerical boundary ConHitions are treated either explicitly (E), set

to values at previous time step (replace n by n - I on the rlght-hand side

of eqs. (32) and (33)), or implicitly (I), alteration of appropriate block

tridiagonal matrix elements.

The numerical scheme for each numerical experiment is defined by the

temporal differencing (_,e,_), the spatial differencing (method i, 2, 3. 4,

or 5 of table 2), the variables chosen for the boundary conditions (groups I,

II, III, or IV), and the temporal treatment of the boundary conditions

(E or I). These choices obviously provide a large array of combinations which

we must selectively sample.

Typical steady-state solutions for three different flow conditions are

shown in figures 8-10. Tables 3-8 present some of the results of numerical

stability investigations. The calculations were made with a series of fixed

CFL number and the numerical stability recorded.

Although not extensive at this time, several general observations can be
made:

a. The results with boundary conditions I and II are very similar.

Although the solutions are slightly different in the vicinity of the shock,

the extrapolation of the conservative variables produces results that are

comparable to those obtained when the characteristic variables are extrapo-

lated (see tables 3-6).
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.7

>.6
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z
W

.5

.4

INFLOW: SUPERSONIC

OUTFLOW: SUBSONIC

<

2 4

-- EXACT SOL

<) METHOD 2

CFL = 5

400 STEP

B.C. INFLOW : p,u, p

OUTFLOW " p

AX = 0.125

0 6 8 10

X

Figure 8.- Density distribution: supersonic inflow, subsonic outflow,

Shubin nozzle.

b. For some schemes (see tables 7 and 8), the explicit and implicit

treatment of the numerical boundary conditions produce similar numerical sta-

bility bounds; that is, implicit treatment of numerical boundary conditions is

not necessary for CFL > i (for some schemes).

c. Overspecification of exact boundary conditions causes no problems.

Figure ii shows the supersonic inflow-outflow case.

d. Methods 2 and 3 of table 2 behave almost identically.

For the supersonic-subsonic problem, if we underspecify the boundary con-

dition at the outflow, that is, without specifying anything, the solution

diverges. Moreover, updating the boundary points via the delta form (32)

and (33), and then obtaining

U n+1 = AU n + U
n

o o o

Dn+l b n n
j = _Uj + Uj

instead of updating the boundary points directly through the approximation

(ull)on = Ro(Ul)o n + RIUI n + R2U2 n

= U n + S U n
(UII)j n So(UI)j n + SI J-i i J-2
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1.2[-

INFLOW: SUBSONIC

OUTFLOW: SUBSONIC

EXACT SOL

METHOD 5

CFL = 100

700 STEPS

B.C. INFLOW : p, p

OUTFLOW : p

AX = 0.125

.3 I I I ! I I I
0 1 2 3 4 5 6 7

X

Figure 9.- Velocity distribution: subsonic inflow, subsonic outflow,
convergent-dlvergent nozzle, area ratio 2:1.16,
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9

.8

.6

.5

.4

m

OUTFLOWC
O

i ! .1 I I | I 1 i I

0 2 4 6 8 10

X

Figure I0.- Density distribution: subsonic inflow, subsonic outflow,

convergent-divergent nozzle, area ratio 2.5:1.5.

TABLE 3.- Nb$1ERICAL STABILITY CHART:

BOUNDARY SCH_fE I, SHUBIN NOZZLE

(Boundary conditions: inflow = c,m,e; outflow = _)

I

Method ICFL 5
l

I (I) Yes 1
(E) Yes I

r I
(I) Yes i

I
i 5 (E) Yes i

I0 (I) Yes
(E) Yes

4
(1) No Ii00
(E) No •

J

Notes: Supersonic inflow; subsonic outflow.

I = implicit numerical boundary condition

E = explicit numerical boundary condition

r

Method [ Method

2 4

(I) Yes (I) Yes

(E) Yes (E) No

(I) Yes (I) Yes

(e) Yes ....

(I) Yes (I) Yes

(E) Yes

(_) Go (I) No

(E) No ---
. i
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TABLE4.- NUMERICALSTABILITYCHART:
BOUNDARYSCHEMEI, SHUBINNOZZLE

(Boundaryconditions: inflow _ p,m,e; outflow -

CFL

5

I0

Method Method Method
2 4 5

(I) Yes (I) Yes (I) Yes
(E) Yes (E) Yes (E) Yes

(I) Yes (I) Yes (I) Yes
(E) Yes (E) No (E) Yes

(I) Yes (I) Yes (I) Yes
(E) Yes --- (E) Yes

i00 (1) No
(E) No

(I) No (I) No

(E) No

Notes: Supersonic inflow; subsonic outflow.

I = implicit numerical boundary condition

E = explicit numerical boundary condition

TABLE 5.- NUMERICAL STABILITY CHART:

BOUNDARY SCHEME II, SHUBIN NOZZLE

(Boundary conditions: inflow - o,m,e; outflow = p)

Notes:

CFL

i0

I00

Method Method Method

2 4 5

(I) Yes (I) Yes (I) Yes

(E) Yes (E) No (E) Yes

(I) Yes (I) Yes (I) Yes

(E) Yes --- (E) Yes

(I) Yes (I) Yes (I) Yes

(E) Yes --- (E) Yes

(I) No (I) No (I) No

(E) No --- (E) No

Supersonic inflow; subsonic outflow.

I = implicit numerical boundary condition

E = explicit numerical boundary condition
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TABLE 6.- NUMERICAL STABILITY CHART:

BOUNDARY SCHEME II, SHUBIN NOZZLE

(Boundary conditions :

CFL Method2

I

I _ (I) Yes
(E) Yes

!

I
5.(1) Yes

4(E) Yes

i0 I (I) Yes

i(E) Yes

I

I(E) Yes

I00 ! (E) No

Notes:

inflow = p,m,e; outflow -- m)

Method

5

(I) Yes (I) Yes

I (E) No (E) Yes

(I) Yes (I) Yes

--- (E) Yes

(I) Yes

(E) Yes

(I) Yes

(I) No I (I) No

i

--- I (E) No

Supersonic inflow; subsonic outflow.

I = implicit numerical boundary condition

E = explicit numerical boundary condition

TABLE 7.- NU_IERICAL STABILITY C_RT:

BOUNDARY SCHEME IV, SHUBIN NOZZLE

(Boundary conditions: inflow = p,u,p; outflow = p)

Method I Method I Method MethodCFL i 2 4 5

5

i0

i00

(I) Yes

(E) Yes

(I) No

(E) No

(I) Yes(E) Yes

(I) Yes

; (E) Yes
I

(I) Yes

(E) Yes

(I) No

(E) No

(I) Yes (I) Yes

(E) No (E) Yes

(I) Yes (I) Yes

(E) No (E) Yes

I (I) Yes (I) Yes

(E) No (E) Yes

(I) No (I) No

(E) No

Notes: Supersonic inflow; subsonic outflow.

I = implicit numerical boundary condition

E = explicit numerical boundary condition
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TABLE 8.- NUMERICAL STABILITY CHART: BOUNDARY SCHEME IV,

CONVERGENT-DIVERGENT NOZZLE

(Boundary condition: inflow = P, p; outflow = p)

CFL

i0

20

10 3

Method Method Method Method

I 2 4 5

(I) Yes

(E) Yes

(I) No

(E) No

Accuracy

p rob lem

(I) Yes

(E) No

(I) Yes

(E) Yes

(I) Yes (I) Yes

(E) No (E) No

(I) Yes (I) Yes

(E) No (E) No

(I) Yes (I) Yes

(I) Yes (I) No

Notes : Subsonic inflow; subsonic outflow;

area ratio 2:1.16. No shock.

I = implicit numerical boundary condition;

E = explicit numerical boundary condition.

.8

.7

>.6

3-

z
uJ
:_ .5

.4-

.3

0

INFLOW: SUPERSONIC

OUTFLOW: SUBSONIC

2 4

X

<>

EXACT SOL

<) METHOD 2

CFL = 5

1000 STEPS

B.C. INFLOW : p,u, p

OUTFLOW : p,u, p

AX = 0.2

I I I

8 10

Figure ii.- Density distribution: overspecify at outflow,

Shubin nozzle.
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where the Ri's and Si's are the same as in equations (32) and (33), produces

a solution that is not as smooth near the boundary.

The smoothing parameter for the fourth-order dissipation term for

methods (3)-(5) of table 3 are 0.5. No study has been made for varying the
smoothing parameters for different solution behavior zones.

CONCLUSIONS

A comprehensive overview of the state of the art of well-posedness and

stability analysis of FDE for IBVP of the hyperbolic type was presented. The

"freezing" theory was used as a guide to construct boundary schemes for the

I-D inviscid gas-dynamics equations. The use of primitive variables as the

analytical boundary conditions for the conservative form of the I-D inviscid

gas-dynamics equations was formulated and then applied to the quasi-l-D nozzle

problem.

Spatial linear extrapolation as a boundary scheme can produce reasonable

steady-state solutions. It is scheme-independent, and thus provides a compact

form for computer code implementation. Added dissipation terms, the linear-

ization of the (3F/$U) matrix and ways of updating the boundary points can

affect the stability and accuracy of the solution. Future work in this area
is needed.
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APPENDIXA

Definition A.I:
is defined as

DEFINITIONSANDEXAMPLESOFWELL-POSEDHYPERBOLIC
DIFFERENTIALEQUATIONSIN "L2 NORM"

Well-Posednessof CauchyProblem

The L2 normof a vector function u(x) with --== < X < _

where u* is the transpose and complex conjugate of u.

Consider the Cauchy problem

u t + Au x + Bu = 0 -= < x < =, t Z 0 1

!u(x,0) = f(x)

(AI)

where A and B are N × N constant matrices, and u and f are vectors with

dimension N.

Definition A.2: For all initial values f(x) with IIf(x)II < _, the

Cauchy problem (AI) is well-posed if there are constants k, = (independent of

f(x)) such that for all solutions and all t, there exists an estimate.

llu(x,t)II_<K eatllu(x,O)ll (A2)

where

llu(x't)II " [I__ u*(x't)u(x't)dx] I/2

Example: Consider the flrst-order scalar equation

with IIu(x,0)l

ut(x,t) - =u(x,t) - 0 -® < x < _, t _>0 1

Ju(x,0) " f(x)

< _ and known real constant e. The solution of (A3) is

(A3)

u(x,t) --f(x)e_t
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Since

llu<x,t)11-- le tl llu<x,o)ll

the solution of (A3) satisfies (A2). Therefore (A3) is well-posed.

The definition of hyperbolic and strictly hyperbolic systems is as fol-

lows: The system (AI) is hyperbolic if A is diagonalizable and with real

eigenvalues. It is strictly hyperbolic if all the eigenvalues are real and
distinct.

There is a simple equivalent algebraic condition for definition (A. 2) to

hold. This condition (ref. 2) is found by Fourier transforming equation (AI)

in x and studying the norm of the Fourier transformed variable. Through

this method, it can be shown that a hyperbolic system (AI) with all

u(x,0)II < = and B = 0 are well posed.

Let us define P(i_) = -i_A with w real. Then the algebraic condition

is: The Cauchy problem for (AI) is well-posed if and only if there are con-

stants K and _ such that

I st

maxie P(i_)t < K e

Example: For the scalar hyperbolic equation

u + cu = 0
t x

u(x,0) = f(x)

with c real and !i i_iu(x,O)il < =. We have

P(i_) = -i_c

thus max_ e-i_c E I. If we take K = i, _ z O, then the algebraic condition

is satisfied. That is I!u(x,t)I! = liu(x,O)II. For the hyperbolic system (AI),

the well-posed algebraic condition is immediately satisfied since there is a

unitary matrix T s.t.

A(0), _. real and ITI = IT-If = l
J
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Well-Posednessof Initial BoundaryValue Problem (IBVP)

Consider the IBVPof the strictly hyperbolic system in the quarter plane

(0 _<x < _)

u t + Au x = F(x,t) 0 _< x < _, t > 0

u(x,0) = f(x)

I sullu (0,t) = (0,t) + g(t)

where A is an N x N diagonal constant coefficient matrix with

A = -All/

(A4a)

(A4b)

(A4c)

C'°)0 > 0

> 0

and

I
u , (ul, , u£)T , II ( _ , ., uN)T• • • u = u_+l

where Xj, j = I, . .., N are real and distinct, S is an &x(N - 4) matrix,

and f(x) is smooth. (It is no restriction to assume that A is in diagonal

form because the system is strictly hyperbolic and can always be written in

this form after a suitable transformation.) For simplicity, we will consider

the homogeneous initial data u(x,0) = f(x) - 0. The assumption of homogeneous

initial data is no restriction since we can always subtract that solution of

the nonhomogeneous Cauchy (initial value) problem and obtain exactly this

situation.

Definition A.3: We will say that the quarter-plane problem (A4) with

homogeneous initial data is well-posed if the estimate

llu(x,t)lJ 2 dt < Ig(t)I 2 dt + llF(x,t)lJ 2 d
- T

(A3)
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holds with a constant K T independent of g and F, but perhaps depending on

r. In here, the L2 norm of u(x,t) is defined as

OO

I'_u(x,t)ii = u*(x,t)u(x,t)dx

We can extend this definition forhigher dimension systems of equations

with a slight modification. Consider the IBVP of a two-dimensional strictly

hyperbolic system (see sec. 2 for definition) in the quarter plane

(0 < x < ®, _ < y < ®)

u t + Au x + BUy = F(x,y,t) 0 _< x < ®_

u(x,y,O) = 0 -= < y < _ I (A6)I sullu (O,y,t) - (0,y,t) + g(y,t) t _ 0

where A, S, u I and u II are defined as before (with A replaced by .:A + -2B,

2 =I)where ._ and _z are real and _ 2 + _2

Definition A.4: We will say that the quarter-plane problem (A6) is

well-posed if the estimate

_" 2 dt + !lu(x,y,t)'_ dt
i'iu(0'y't)ll y "x,y

,; J _o I

: '" dt + '_(::,y,t); I d
__ K_. g(y,t) y - , ,x,y

holds. Here K T depends on ; but not _,n F and g. _4here the L_ norm

are defined as

I' 2 y_ u*(O,y,t)u(O,y,t_dv,lu(O,y,t)]ly =

and

•l,u(x,y,t)ll_,l 2 - u*(x,y,t_u(x,y,t)dx dy
Y . "

2
with similar definitions for !!g(y,t)!ly and ',lr(x,y,t)!ix,v.

For the one-dimenslonal systems, we can get the same ccndi=iens as in

definition (A3) by using the method of characteristics. This 15 not the case

for higher dimensional systems (refs. 2, 6). The applicaLien of the method of

characteristics is discussed in detail in section 2. Here we will state the

necessary and sufficient algebraic conditions for de_Init±on (A3). This is a
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simplified version of the main theoremof Kreiss (ref. i). The theory of
Krelss (ref. I) treats problems in any numberof spacedimensions. Interested
readers should refer to reference 1 for extension to morespace dimensions.
For the two-dlmenslonal and three-dimens_onal quasilinear systemsof invlscid
gas dynamicsequations, please refer to Oliger and Sunstr_m(ref. 6) and Oliger
(ref. 7).

The so-called "normal-modeanalysis" algebraic conditions for defini-
tion (A3) will be stated after the following brief preliminary background. Let
us Laplace transform (A4a) and (A4c) with respect to t and denote s = _ + i_
as the variable dual to t. Weobtain

s_ + A_x = F for x > 0|

J_I SSIIu = + _ for x --0

The symbol (^) is the Laplace transformation of the variable ().

(A7)

Associated with (A7) is the following eigenvalue problem. A square-

integrable function _(x) for 0 ! x < _ is an eigenfunction of (A7) corre-

sponding to an eigenvalue s if _ is a solution of the problem

s¢ + A_ x - 0 for 0 i x < = (A8)

¢I = S_II for x = 0 (A9)
=

We do not want s with _ = Re(s) > 0 to be an eigenvalue of (AS) and (A9).

If this happens, # is not in L2 (4 is not in L2 means ¢ is not square

integrable). Therefore, we have to decide whether s with Re(s) > 0 is an

eigenvalue or not. Equation (A8) is an ordinary differential equation whose

general solution in L2 for Re(s) > 0 can be expressed as a linear combina-

tion of £ linearly independent normalized eigensolutions (see Kreiss, ref. I,

for details). That is, the general solutions in L2 depend on £ free

parameters o - (oi, ., o_) T. Introducing the solution into (A9), we get

a linear system of equations:

R(s)o = 0 , R a matrix function of s (AIO)

and s is an eigenvalue if and only if

Det[R(s)] = 0 (All)

Kreiss has shown that Det[R(s)] is a continuous function of s for

Re(s) g 0 and he defines s = i_ to be a generalized eigenvalue if

Det[R(i_)] = O.

Now we can state the necessary and sufficient conditions for the estimate

of type (AS) to hold.

Theorem A.l:_'The IBVP for (A4) is well-posed in L 2 if and only if the

eigenvalue problem (AS) and (A9) has no eigenvalue or generalized eigenvalue

for Re(s) _ 0.
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Next, wewant to give an exampleto showthat for a one-dimensional sys-
tem, using the methodof characteristics is equivalent to TheoremA.I. Here we
assumethat readers are either familiar with the subject of the methodof
characteristics or will consult references 2-4 (or sec. 2) for details. Con-
sider the following quarter-plane problem for the waveequation

w = w 0 < x < =, t > 0 (AI2)
t t XX - -

with initial conditions

w(x,0) = f(x)

and boundary conditions

wt(x,0) --g(x)

w(0,t) = wt(0,t) = 0

We can recast the problem into a system of first-order hyperbolic form by

letting v = w t, u = Wx, z I = v - u, and z 2 = v + u. Then (AI2) becomes

+ = 0 (AI3)

with initial conditions

<zl)fx)
z2 + fx

at t = 0 (A14)

and boundary conditions

z 2 = -z I at x = 0 (AI5)

From the method of characteristics, we can see that the initial condition (AI4)

together with the boundary condition (AI5) determine the solution of (AI3)

uniquely.

Now we turn to Theorem A.I. The general solution of the associated eigen-

value problem for (AI3) in L2 with Re(s) _ 0 is

-SX

= o I e e I (AI6)

where e I is the normalized eigenvector of
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corresponding to Re(s) Z 0. The normalized elgenvector eI

Introducing (AI6) into (AIS), we get

-sx IX=O

Therefore, there are no non-trlvlal solutions in L2
problem is well-posed.

for Re(s) Z 0

is found to be

and the
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APPENDIXB

CONDITIONSONWELL-POSEDNESSOFTHEINVISCIDEQUATIONS
OFGASDYNAMICS

Freeze the coefficients of the Jacobian matrix A and rewrite equa-
tions (10) and (ii):

8U 8U (BI)

20 20
77+ A _fx= 0 , Ut = M-IUt (B2)

and the characteristic equation

_W + A _W
_--t _x = 0 (B3)

with

W = T-IU (B4)

or

W = T-IM-IU (B5)

where

ables of (BI), (B2), and (B3), respectively,

defined as

U, 0, W are the conservative, primitive and the characteristic vari-
areThe matrices M -l and T-I

1 0 0

-Uo i

Do Po

(y- l)Uo2
(i - y)uo (_ - i)

M -I =

T -I t

-i

/f /fpoCo
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and uo, co, 0o are the values of u, c, p due to freezing of coeffi¢
Wewant to discuss two sets of well-posed boundaryconditions: (i) im[
boundary conditions (case i) that are in the form of the individual na
physical variables alone, that is, the primitive or the conservative _
and (2) imposedboundaryconditions (case 2) that are in the form of
combination of the physical variables, that is, alp + a2m+ aae = g(t
blp + b2u + b_p - _(t)
knownquantities, not

_S.

1

if;

xnear

or

where the al's, bi's, g(t) and _(t) are the .yen

O, m, e, u, or p.

Case 1

Assume that we want to impose the analytical boundary condition in terms

of the conservative variables. (We use the term "analytical boundary condi-

tions" as the boundary conditions that are required for the partial differen-

tial equation.) The boundary is assumed to be at the left of domain and the

flow direction is from left to right. Thus the number of positive elgenvalues

(equal to the number of analytical boundary conditions) and negative eigen-

values is known. The procedure to check for well-posedness consists of two

steps. First we reorder (Bb) as

I , Q, Iy
where W I and W II are the characteristic variables corresponding to positive

and negative eigenvalues of A, respectively. And u I corresponds to the

proposed analytical boundary condition variables and u II represents the rest

of the variables. Second, we have to check whether Q_I exists or Q_ is

empty. Thus the necessary and sufficient condition for well-posedness is
Q_ exists or Q_ is empty.

Similarly, if we want to impose the primitive variables as analytical

boundaries, we can reorder (B4) as

(::,).(Oo:
where well-posedness here means _[I exists or Q_ is empty.

Therefore, under a type of inflow-outflow condition, once we have decided

on a set of analytical boundary conditions, the way to check for well-posedness

of (BI) or (B2) is to see if the determinant of (Q_) or (Q_) is equal to zero

or not. The following are the determinants of Q_ and Q_ (if it is not empty)

for various choices of inflow, outflow conditions. Again, we want to emPha-

size that the boundary is assumed to be at the left of the domain. Therefore,

we only need to investigate the determinant of Q_ (or Q_). The form of a

Q_ (or Q_) depends on how we order the variables in w II and u II (or O11),

which differ by a change of rows and columns or both; but the absolute value
of the determinants are the same.
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Pure supersonic: (u > c for inflow and -c < u < 0 for outflow):

Primitive variables: inflow -- There are three positive eigenvalues. We

require three analytical boundary conditions. Thus Q_ is empty.

Primitive variables: outflow -- There are no positive eigenvalues. We

do not have to impose any analytical boundary condition. Thus Q_ - T-I and

Det(Q_) = Det(T-l). Note that Det(Q_) means determinant of Q_.

Conservative variables: The situation is the same as in the case of

primitive variables. Therefore, the well-posedness conditions are to impose

all three variables for the supersonic inflow case and none for the supersonic

outflow case.

Subsonic outflow: (-c < u < 0): There is one positive eigenvalue. We

require one analytical boundary condition. Therefore, we can propose the fol-

lowing three choices.

Primitive variables: analytical boundary condition- p

(00 Q_ = Det(Q_) z - --

_! /f

,rf_

Primitive variables: analytical boundary condition -- u

II)Co 2

1

_PoCo

Det (Q4) =

Primitive variables: analytical boundary condition -- p

_f_oCo/

Det (Q_) = -i

O

Thus, imposing any one of the variables p, u, or p will result in a well-

posed condition.
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Conservative Variables:

!
I

Q4

u o

/2po

Det(Q'_) - --

analytical boundary condition -- e

(y - i)% 2 (y - l)uo

2Co2 Co 2

w+
(_ - t)UoZ -I (I - _)uo

_+

2vr2POCO ¢_0 o _OoC o

i (_- l)uo2 (Y- l)uoz
+

¢_'Po 2_-0oCo 2"/2"0oCo 2

Conservative variables: analytical boundary condition -- m

I_po (Y - i)% 2 _

I - _Co_-- - (YCo2I)

Q_ i u° + (Y- t)u°2 (y- i) /

2 ¢_'_oc o v'2"po c o /

Det(Q%) =
(y - 1)(co + uo)

)/_'PoCo 2

Conservative variables: analytical boundary condition -- 0

(¥ - t)uo

I_pO C02

Q_ = (I --y)U0

-I + '/2"PoCo

-<!_-

Co 2

(_ -. t)

Yl2"iOoC0 .

Det(Q_,) =,,-(Y - I)

/_QOCO 2

again, for well-posedness, imposing any one of the variables p, m, or e
result in a well-posed condition.

Sdbsonlc_inflow: (0'< u < c):

Primitive variables: analytical boundary conditions -- u, p

Q4 = 0 - Det(Qw) . . not well-posed

will
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Primitive variables: analytical boundary conditions -- P, P

Primitive variables: analytical boundary conditions -- p, u

Q4 =1"--!---" Det(Q4)

gr2"0o c°

In this case imposing u and p will produce an ill-posed problem.

Conservative variables: analytical boundary conditions -- m, e

uo (Y - l)Uo2

Q4 =-- + - Det(Q_)

_Po 2_poCo

Conservative variables: analytical boundary conditions -- p, e

-i (i - y)u o

Q_ =-- + - Det(Q_)

¢2_-P0 _-PoCo

Conservative variables: analytical boundary conditions -- p, m

__ - i = Det(Qw)Q4 = --

v/20oC 0

In this case, imposing any pair (p,m), (p,e) or (m,e) will result in a

well-posed condition. From the above examination, the only analytical boundary

condition set that produces an ill-posed problem is (u,p) for the subsonic

inflow case.

Case 2

In this case, we only can impose the characteristic variables correspond-

ing to the positive eigenvalues of A (or A) in order to obtain a well-posed

condition.

For supersonic inflow, we can specify all three characteristic variables

w l, w2, and w3, that is,

i
P 2 p = gl (t)

Co
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i 1

_f _-poCo

1 i
---u +_p = g3(t)
_- _-0oeo

for the primitive-nonconservative form (II) or conservative form (9), and

(Y- l)UO2lp + [(Y - l)uo]1 7c2 j =o' J m I

_ Uo (Y- l)uo 2
--+

_o o 2_poCo
o+[_+_;_uo.lo+_OoCo J (y - i)]

.... e = g2(t)

_-PbCo

U O (¥- I)Uo 2 ]
. v_'Oo 2)/2"PoC o

p+ -[-_Oo + _-_U°Tm+vTPo=oJ (y- i)] (t)
V_'P oCo e = g3

for the conservative form (eq. (9)) where _i's and gi's are the values which

are supposed to be specified.

For subsonic inflow, we only can specify w I and w2, that is,

1
2 P = g1(t)

c o

I
IU + p = _2(t)

for system (ii) or (9) and

V (Y- I)% 2]L_ _oj j p +

3

(_ - I)|z e = g1(t)
Jc o

_Uo+<__: ,>.o'l
_-_o 2_o=o J

p + m+

for system (9). Again the _i's and gi's are the values which are supposed to
be specified.

=,
h=
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APPENDIX C

EXAMPLES OF THE THEORY OF GUSTAFSSON, KREISS, AND SUNDSTROM

(NORMAL MODE ANALYSIS)

Here we briefly review the stability theory of Gustafsson, Kreiss, and

Sundstrom for the initial boundary value problem of the hyperbolic type for

the leapfrog method. Please refer to their original paper (ref. 9) for more

details.

Consider the following equation

_u _u
--+ c : 0
_t Tx

u(x,0) = f(x)

0 < x <_ i, t > 0 I (Cl)

In addition to equation (CI), we specify boundary conditions

u(0,t) : go(t) if c > 0

u(l,t) : g1(t) if c < 0

But, numerically, one needs boundary conditions at both x = 0 and x = I.

Therefore, a separate procedure is used to determine the numerical boundary

conditions.

Let us solve (CI) by the leapfrog scheme with

Zx as the mesh spacing. We will use the notation

vj n = v(jAx,t) : u(jAx,t)

At as the time-step, and

t : nat

Assume for the moment c = -I, 0 i x < =, and approximate (CI) by

n+1 n-1 At n n

v.j = v.j + _ (vj+ 1 - v.3_l) (C2a)

0

vj : f (jAx) (C2b)

and the numerical boundary condition at x = 0 by

Vo n = vl n (C3)

The Gustafsson et al. stability theory for this case seeks a general solution

of (C2a) and (C3) of the form
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n
vj = zn<j

for appropriate complexscalars z and <. This substitution is made in both

the difference scheme in the interior and on the boundary. The basic scheme

(C2a) is assumed stable for the Cauchy problem, that is, (At/Ax) = _ < i for

the interior points.

By substituting vj n - znvj(x) into (C2a) and (C3), we obtain

^

^ z 2 - I _j - 0 J - I 2 (C4a)vj+l _z - vj-1 ' ' "

Vo " vl (C4b)

Equation (C4) is defined as the resolvent equation.

Letting the solution of (C2) be znK j, we obtain the characteristic equa-
tion for (C2) as

<2 z 2 - I
_z _ - i = 0 (C5)

A necessary and sufficient condition for stability of the IBVP is that
(C4) have no nontrivial bounded solutions

with Izl _ i. An eigenvalue to the associated equation (C4) is defined as a

nontrivial solution to (C4) with bounded vl " <J(I<l < I) and Izl > i. A

generalized eigenvalue to the associated (C_) is defined as a nontrivial solu-

tion to (C4) with v. = <J, and IKI = 1 and Izl = I, such that all solu-
tions z,_ of (C5) _ith I_l > i, and sufficiently close to z and <, have

IT[ < i. The equivalent necessary and sufficient condition for stability is

that the associated (C4) have no nontrivial eigenvalues or generalized

eigenvalues.

The stability analysis consists of the following four stages:

I. The order d (d = 2 in this case) of the resolvent (difference)

equation (C4a) determines the general solution of vj (x) -- a linear combina-
tion of d solutions

vj = ct_1 j + cz<2 j + . . . + Cd_d j

where the _i's are the roots of (C5).

58



2. Theroot structure of (C5) determines the type of solution for vj(x).
In this case the roots of (C5) have the following properties (see ref. 9 for
detail). If Izl > I, then I<II < i and I<21 > I. This is an immediate
consequenceof the Cauchystable schemeof (C2a). If z = ei0, then

!<If > I, I<21 > I for Isin 8I > %

I<iI-i<21- i for Isin el E

<z = -i, <2 = 1 for 8 = 0

<l = i, K 2 = -i for 8 =

<z = <2 = ±i for sin 8 - ±l

3. The assumption that the interior scheme (C2a) is Cauchy stable helps

delete the unbounded solutions of vj -- all solutions with I<ii > i. The

theory says that the general bounded solution of (C4a) is then

j z z

l<i I<I

From lemma (5.1) of reference 9, only one root of the quadratic (C5) has

modulus less than one. When Izl = I, one or both of the roots of (C5) may

have modulus one. If this is the case, the <i for the general bounded

solution of (C4a) is defined by continuity to be that root which is the limit

of the root <(_), I<(_)I < i for i_l > i, as l_I + i. Thus

J
V. --- CIK I
3

4. After substitution of vj = <J in (C4b), if there exists a nontrivial
bounded solution for Izl Z i, the difference schemes (C2a) and (C3) will be

unstable. In this case

(< - I) = 0 (C6)

Therefore, when < = I, (C5) and (C6) have a nontrivial solution with z = -I.

From item (2) above we know that this is a generalized eigenvalue and thus

stability is violated.

In many instances, the root structure of the characteristic equation (C5)

is difficult to analyze. Another way of testing for generalized eigenvalues

is as follows:

With z : -i, we want to find out whether < - i is <i or <2" We

therefore make a perturbation calculation, and study (C5) in the neighborhood

of z = -i. Let z = -I - 5, 6 > 0 and < = 1 + e with _,£ small. From

(C5) we get
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Z2 - 1

_Z

//z 1'_ 2

2
z

-_(i + a) - -Z(l + a) + 4
El, 2 = 2 -- I

Since _ > O, at least one of the El, i - 1,2 is negative, and < = I + e

is <z, not <_. Therefore z _ -i is a generalized eigenvalue and thus

stability is v_olated.

Now, consider using

n+l n
vo = vI (C7)

instead of (C3). The equivalent of equation (C6) becomes

For I_iI _< i and Izl > i

(z - <i)ci : 0

Iz - <_I > 0

Thus, (C2a) and (C7) constitute a stable difference method for the right half-

plane problem.

Stability of some other explicit and implicit schemeS; uslng the above

approach, can be found in Oliger (ref. 15), Gottlieb and Turkel (ref. 24),

Sloan (ref. 23), and Sk_llermo (ref. 21). For multistep schemes, the stability

criteria of this method are often very difficult to verify. Here, we are

going to discuss an unconditionally stable scheme in which we use it for the

quasi-l-D nozzle problem. Let us solve (CI) by backward Euler in time and

central difference in space. The numerical boundary condition at x = 0 is

by linear extrapolation

n+1 vjn = _/ n+z n+z\ At (C8a)vj -  vj+I - vj_1) , x : 2 --f

n+l _ n+1 n+1
v0 = zvI - v2 (CSb)

The characteristic equation of (C8a)

<(z - I) : _,z(<2 - 1) (C9)

and the boundary scheme (C8b) satisfies

(< - i) 2 " 0 < - I (ClO)
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The Cauchy stability of (C8a) implies that the roots <1,2 of (C9) satisfy

I< I<i, !<21> I for 4zt" I

The only problem is that

z - I when _ = 1

Therefore, we have to prove whether there is any generalized eigenvalue

(J. Oliger and B. Gustafsson, private communication) for (C9) and (CI0).
stability, we do not want I<l| _ i from below as Izl + i from above.

Therefore we want to find out if <I = I. Let z m I + 6, 6 > O, and

K = i + E with 6,c small, we get

For

(i + E)(I + 6 - i) _ k(l + 6)[(I + e) 2 - i]

_e(2 + e)

(i + c) - _,E(2 + e)

Since 6 > O, this implies _ > O; thus, < = i + _ is <2, not <l" There-

fore z = I is not a generalized elgenvalue, and the entire scheme is

unconditionally stable.

By applying the same procedure, it can be shown that the boundary approxi-

mation (C8b), that is, spatial linear extrapolation, together with the interior

schemes (a) central difference in space and (b) two-step backward Euler in

time, form an unconditionally stable scheme for the model equation (CI).
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APPENDIXD

MATRIXMETHODANDPOSITIVEREALFUNCTIONMETHOD

Consider a scalar hyperbolic equation:

_u _u
Q_t + c _x = 0 0 < x < i, t > 0

u(x,O) - f(x) c > 0

u(O,t) = g(t)

(DI)

The above equation constitutes a well-posed problem. Let vj - v(jAx,t) be
the difference solution of (DI) at x - jAx, where Ax is the step size.

Let us discuss the method of lines approach by using central difference in

space. We will examine the stability of this difference scheme by the matrix

method (ref. 29) and by the positive real-function method (ref. 30) for fixed

_x.

A word of caution: these methods only show the stability of the ODE for

a fixed _x. In order to show that the original PDE is stable, the related

ODE has to be stable as Ax ÷ O. That is, additional analysis is required.

The additional requirement involves the analysis of infinite dimension

matrices. Here, we only show the method for fixed _x, and want to point out

that stability of the ODE for fixed _x does not rule out the possibility

that the ODE might become unstable as Ax + O.

By central differencing in space, (DI) becomes-

., J- !

dvl V(FX)d---{-+ c - c_2_x/ = 0 ,
j z I

At the right boundary (the numerical boundary) we use the backward difference

scheme,

_vj vj - vj_ I

_x Ax

and, therefore, we have

dvj Ivj - vj_i _

d--_-+ c\ _x -_ -- 0
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In matrix notation

with

A z

dv c
--Av + _(t)-- m

dt 2Ax

-I

0 -i

2

(D2)

If the real part of all the eigenvalues of A are negative, we can apply a

stable ODE solver to integrate (D2). The particular type of ODE solver

depends heavily on the spectrum of the eigenvalues of A, that is, on the

stiffness of the system. The matrix A cannot be transformed to a diagonally

dominant matrix with all its diagonal elements positive. We cannot get an

explicit bound for _x. We have to actually compute the eigenvalues of A.

Gary (ref. 29) has shown that A is a stable matrix for various mesh spacings.

We now turn to the use of positive real functions in an investigation of

numerical stability of (D2) with fixed Ax. For details of the theory, please

refer to Dahlquist's origival paper (ref. 30) on this subject.

Let z _ (2_x/c)l, with _ the eigenvalues, N the dimension of A, and

DN(Z) - det(zl - A) = 0

Then DN(Z) is of the form

DN(Z )

z 1 0

-1 z 1

-1 z

I

z+2
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It is easy to see that

Dn+ l(z) = ZDn(Z) + Dn_ l(z) n _> 3

If it turns out that Dn(Z) # 0 for Re(z) > 0 and that imaginary zeros

are simple, then for each n, all solutions of the ODE's are bounded, and any

A-stable method can be used for the integration in time.

Let

D
n

Cn = D
n-I

then

1

#n+l " z + _"n n >_ 3

D3(z)

D2(z)

liI °z I

-2 z+2

m

z 1

-2 z+2

or

z+2
_3 " z + (D3)

z(z + 2) + 2

Since

D1(z) - z * 2 = 0 Z " --2

Da(z) - z(z + 2) + 2 - 0 z _ -i ± i

have their only zeroes in the left half-plane, it is sufficient (though not

necessary) to show that _n(Z) are positive functions for n _ 3. Let us look

at the second part of (D3). Recall that for an arbitrary complex number W

that if Re(W) > 0 then Re(W -l ) > O. Since

f(z) = z(z + 2) + 2 2
z+2 --z+-- z+2

is a positive function, it follows that _3 is a positive function. By apply-

ing the proof by induction, we can easily show that _n+1, for n £ 3, are
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positive functions. Thus, the central scheme is stable for c > 0 for fixed

Lx.
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APPENDIXE

SUFFICIENTSTABILITYCONDITIONS

Fromthe discussion of well-posedness of hyperbolic initial boundary _alue
problems, no newdifficulties arise if we have smoothvariable coefficients
and quasi-linear equations with smoothsolutions. Wewill concentrate on a
general strictly hyperbolic constant coefficient system with well-posed coupled
boundaryconditions. With this systemin mind, we will give a detailed
description in the following order: (i) the basic idea, (2) dissection of the
problem, (3) reduction of the system to scalar equations, and (4) sufficient
stability conditions.

Basic Idea

Thesufficient stability conditions only involve properties of methods
for related Cauchyproblems. Wewant stable schemesfor the related Cauchy
problemapplied at the interior, and stable and uncentered dissipative schemes
for the related Cauchyproblemapplied at the boundary. The stabilities of
the related Cauchyproblemsare usually knownor can be verified by standard
techniques. Themain theories behind these are basedon the Cauchystability
of the compositemethod, and the matching of stable schemes,which has been
examinedby Ciment (ref. 13) and Oliger (ref. 15). The usefulness of these
results is fourfold: (i) stability can be easily verified by standard tech-
niques; (2) the result can be used to guide us in the construction of stable
methodsfor the entire problem; (3) the Cauchystability of the composite
methodis especially useful and efficient for higher order schemes;and (4) the
result can help to simplify the verification of the necessary and sufficient
conditions tremendouslyif the use of higher order schemesis desired.

Dissection of the Problem

Wewill discuss the approximation of the well-posed strictly hyperbolic
system

wt + Awx = 0 0 < x <_ I, t > 0

w(x,0) = f(x)

L_w(O,t) - f_(t)

L2w(l,t ) = f2(t)

(El)

where A is a N × N constant matrix, and LI and L2 are rectangular

matrices. After an appropriate nonsingular transformation T, we can trans-

form (El) into
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ut + Aux = 0 1

Ju(x•0) --f(x)

(E2a)

where

A

0 , A 2

and

I u £u = (u I )T

II £+i N)TU = (U • . . , U

u=Tw

with boundary conditions

I Slull 1

u (O,t) -- (O,t) + _i(t)

uII(l,t) = SiiuI(l,t) + _ii(t)

(E2b)

where S I is an £x(N - Z) matrix, SII

gl = Tf1' _II = Tf2"

is a (N - £) × (£) matrix• and

From the well-known theorem of Gustafsson et al. (ref. 9), the stability

of the approximation for an initial boundary value problem on 0 E x E i is

equivalent to the stability of two related quarter-plane problems. Therefore

we can split (E2) into the related left and right quarter-plane problems. The

related right quarter-plane problem on 0 E x < =, t > 0 is obtained by simply

removing the boundary at x w I and extending the definition of our initial

data and interior approximation to x = =, that is,

u t + Au x = 0

u(x,0) -- f(x)

I S iul I (0,u (O,t) = t) + _i(t)

0_< X < =

' t-<O I

(E3)
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The related left quarter-plane problemon -_ < x _ i, t > 0 is defined

ut + Aux = 0 -_ < x E I, t _ 0

Ju(x,O) - f(x)

ull(l,t) = Sllul(l,t ) + _ll(t)

E4)

Therefore, the discussion of the right quarter-plane problem (E3) is suffi-

cient for our purpose. The analysis of (E4) is similar.

Reduction of the System to Scalar Equations

We want to solve system (E3) using finite difference schemes. Divide the

x-axis into subintervals of length Ax and the t-axis into subintervals of

length _t Denote the grid points by x_ = j&x and grid functions by
" j

v'(t)3 v(x',t),j t = nat and approximate (using one step in time for illus-
tration; theory holds for multistep) (E3a) in the interior of the domain by

v.(t + At) = i=_ Aivj+i(t) j = r, r + i, r + 2, (E5)
3 _p

where p is the order of the spatial differencing for the interior scheme,

and the approximation grid points are defined as in figure 12 (without the

right boundary present) and A i are fixed N × N diagonal matrices.

LEFT RIGHT
BOUNDARY BOUNDARY

POINTS INTERIOR POINTS POINTS

I , i I-I

0--- r-1 r r+l- J J+I---J+K

Figure 12.- Grid point definition

For the outflow unknowns (variables with negative eigenvalues), we

approximate the boundary conditions by the following uncentered scheme

s s

(°)vll tCji J+i ( + &t)_ C_li) II" vj+i(t) J ,m - 0,

i=-m i=-m

., r - I, m < j

c (k)
where ji are fixed diagonal (N - £) × (N - £) matrices and s is the
order of the spatial differencing for the boundary scheme. Note that for

m = 0 the scheme is one-slded.

(E6)
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The following are a few of the spatially one-sided and uncentered schemes:

: vj+1(t) - vj(t)
_x Ax

i

_j(t) = - _ vj+2(t) + 2vj+,(t) - _ vj (t)
_x Ax

_vj(t) = -v_+2(t) + 6v$+_(t) - 3vj(t) - 2vj_1(t)
_x 6Ax

The first two are one-sided and are of order of accurac_ Ax and Ax 2, respec-

tively. The last one is uncentered and is of order Ax _.

For the inflow part (variables with positive eigenvalues), we have the

analytical boundary condition

VoI(t) - slvIl(t) + _I(t) (ET)

together with r - i additional approximations of the form

I _ n (t) + gj(t)vj (t)- Djiv i
i=o

(E8)

where Dji are fixed £x(N - £) matrices, q

gj(t) are vectors depending on Ax and _i(t).
(ref. 14) for derivation of (E8).

is a positive integer, and the

See Goldberg and Tadmor

Since the Aj are diagonal, we can split the scheme (ES) into its inflow

and outflow parts (ref. 14):

P

I _ Ailv_+i (t)vj (t + At) - J = r, r + i,

i"--p

P

v_l(t + At)= _ .II II -a i vj+i_t)

i=-p

J -r, r+l, .

(Z9)

where

69



Nowwe can see that equations (E5) and (E6) can be partitioned into the
lowing problems

P

v.(t + gt) = A i v.+i(t )J J

i=-p

j .. r, r + i,

= s II(t) + _i(t)vol(t) iVo

q

v I(t) --_Dj IIj ivl (t) + gj(t)
i--0

J l I, , ., r- 1

,El0a)

(El0b)

(El0c)

P

v_l(t + &t) = _ .II IIA i vj+ i (t)

i=-p

S S

uji vj+i_t + At) = _ Cji vj+i_ )

i=-m i=-m

J -r, r+l,

m,j _ 0, .... r - I, m < j

(Eli)

The outflow problem (Ell) is self contained, while the inflow problem

(EIO) depends on the outflow part to the extent that the outflow computations

provide the inhomogeneous boundary values in (ElOb) and (ElOc). Therefore the

stability of the right quarter plane under the above approximation is equiva-

lent to the following two separate parts,

I. Stability of the inflow problem (El0) with inhomogeneous boundary
values

2. Stability of the outflow problem (Eli)

Since all the A i and c_[ ) _)3 , c are diagonal matrices, the inflow prob-

lem splits into £ independent approximations and the outflow problem splits

into (N - £) independent approximations. Similarly, we can split our left

quarter-plane problem into the equivalent form. Therefore, the stability

study of a system of the form (El) reduces to a study of a single scalar equa-

tion with two related quarter-plane problems as follows
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For c > O, or

For c < O.

u t + cu x - 0

u(x,O) -f(x)

u(O.t) = _(t)

ux + cu x - 0

u(x,O) - f(x)

O_x<= 1

t_O,c>O

-®<xsl 1tzO, c>O

u t + cu x - 0 0 _< x < ®

u(x,O) - f(x) t > O, c < 0

u t + cux = 0 -® < x < 1

u(x,O) - f(x) t _>O, c < 0

u(1,t) - _i(t)

(El2)

(El3)

Sufficient Stability Conditions

Let us assume c > O, and discuss stability analysis of difference

approximations to equations (El2). Using the same difference approximation as
before

vj(t + At) - E Aivj +i(t)

i_-p

Vo(t) = _i(t)

vj(t) = gj(t) if r > 1

J =r, r+ I, .

J " l, • • ., r - 1

(El4)

P

vj(t + At) = E Aivj+i(t)

i"-p '

m m

E (°)v t at) E (_)v .(t)cji j+i( + . cjl j+,
i_-s im-s

J _ J (E15a)

J = J + I, . .., J + K

J<m+J&J+K

(Z15b)
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where the approximation grid points are defined as in figure 12 (without the

left boundary present), and the A i, Cji are now scalar constants and gj(t)

are obtained by Taylor series expansions of the solution in the neighborhood

of the boundary in terms of the physical boundary data _l(t). This has been

shown to acquire the desired accuracy of order d if the data is sufficiently

smooth. The form of gj(t) is as follows:

d

gj (t) =

i"0

-- u(O,t) + O(_x d+l)
_x i

d

di. (-c) -i -- _i(t) + O(&x d+l)
dt i

i-0

In (E14) vj(t), J - I, . .., r - i can be approximated or extrapolated
by other uncentered methods (see Oliger, ref. 15). But a stability proof will

be more complicated. Now, the stability of the inflow, right quarter-plane

problem (El4) is an immediate consequence of the stability of the interior

approximation, so the stability discussion will only deal with the outflow

left quarter-plane problem (El5). We need the following definition and

assumptions:

Definition: An approximation is said to be Cauchy stable if it is stable

for the related Cauchy problem.

Assumptions: (I) We assume that our interior approximations and boundary

approximations are stable for the related Cauchy problems; (2) we assume our

boundary approximations are dissipative (or at least one of the scheme is dis-

sipative).

The sufficient conditions rest on the following three results:

i. The theory of matching of stable schemes (Ciment, ref. 13; Ollger,

ref. 15).

2. The theory of successively constructing Cauchy stable methods -- com-

posite method (Oliger, ref. I0).

3. The theory of Gustafsson et al. (ref. 9) -- if the method is Cauchy

stable, then it is stable for the left quarter-plane problem.

Matching of stable schemes- If a Cauchystable scheme of the form (El5a)

is used for all J _ n o and a Cauchy stable dissipative approximation of the

form (Elbb) is used for all J > n o , the resulting approximation is Cauchy

stable. This is based on the result of Ciment and Ollger's theorem on the

matching of stable schemes. The result depends solely on the Cauchy stability

of both methods and the dissipativlty of at least one method. The result is

best illustrated by figure 13.
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I I

n o

........i

no+ I

I

CAUCHY STABLE .,_SCHEME
- CAUCHY STABLE AND

DISSIPATIVE SCHEME

COMBINED CAUCHY STABLE SCHEME

Figure 13.- Sufficient condition.

Successively constructin_ Cauchy stable methods- By applying the previous

method of "matching of stable schemes" on n o - J (see fig. 12), with scheme

(ElSa) for J _ J and scheme (El5b) defined for J - J + i for all

J _ J + I, the combined scheme is Cauchy stable. We can construct a second

composite method using the one we have Just constructed with scheme (ElSa) for

J < J + I and the scheme (ElSb) defined for J = J + 2 for all j _ J + 2.

This in turn again is Cauchy stable by the method of matching of stable

schemes. We proceed in this way until we get to J = J + K. This is illus-

trated by the diagram in figure 14.

Theory of Gustafsson et al.- By successive construction of a Cauchy stable

scheme using the composite method, and the assumption we made for (El5), the

result of Gustafsson et al. (ref. 9) says that the left quarter-plane (outflow)

problem is stable.

Therefore, the key to constructing stable schemes for the initial bound-

ary value problem for the hyperbolic equations is to have Cauchy stable schemes

for the interior points and the boundary points, and at least one of the

schemes is dissipative.
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STEP 1

J J+l J+2 J+K

I I I t .x

CAUCHY STABLE a))_SCHEME (Eq. E15 ( _._ CAUCHY STABLE AND DISSIPATIVE SCHEME( Eq. E15 (b)) DEFINED FoR j = J+l

STEP 2
/

CAUCHY STABLE SCHEME / i
OF COMPOSITE METHOD
FROM STEP 1

CAUCHY STABLE AND DISSIPATIVE SCHEME

( Eq. E15(b) ) DEFINED FOR j= J+2

STEP K+I

J+K- 1 J+K

CAUCHY STABLE SCHEME _OF COMPOSITE METHOD
FROM STEP K

CAUCHY STABLE AND
DISSIPATIVE SCHEME

(Eq. ElS(b)) DEFINED FOR
j'J+K

Y

COMBINED CAUCHY STABLE SCHEME

Figure 14.- Successively constructing Cauchy stable methods.
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